Skip to main content
Log in

The Participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) on the heat resistance of wheat (Triticum aestivum L.) coleoptile cells, the formation of reactive oxygen species (ROS), and the activity of the antioxidant enzymes in them was investigated. The treatment of coleoptiles with 100 µM NaHS caused transient enhancement of the generation of the superoxide anion radical (O2 ) and an increased hydrogen peroxide content. The activities of antioxidant enzymes—superoxide dismutase, catalase, and guaiacol peroxidase— and coleoptile resistance to damaging heat was later found to have increased. The biochemical and physiological effects of the hydrogen sulfide donor described above were inhibited by the treatment of wheat coleoptiles with the hydrogen peroxide scavenger dimethylthiourea, the NADPH oxidase inhibitor imidazole, the extracellular calcium chelator EGTA, and the phosphatidylinositol-specific phospholipase C inhibitor neomycin. A conclusion was made on the role of ROS generation, which is dependent on the activity of NADPH oxidase and calcium homeostasis, in the transduction of the H2S signal, which induces antioxidant enzymes and the development of plant cell heat resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hancock, J.T., Front. Plant Sci., 2016, vol. 8:189. doi 10.3389/fpls.2017.00189

    Google Scholar 

  2. Guo, H., Xiao, T., Zhou, H., Xie, Y., and Shen, W., Acta Physiol. Plant., 2016, vol. 38:16. doi 10.1007/s11738-015-2038-x

    Google Scholar 

  3. Lisjak, M., Teklic, T., Wilson, I.D., Whiteman, M., and Hancock, J.T., Plant Cell Environ., 2013, vol. 36, no. 9, pp. 1607–1616.

    Article  CAS  PubMed  Google Scholar 

  4. Yamasaki, H. and Cohen, M.F., Nitric Oxide, 2016, vols. 55–56, no. 1, pp. 91–100. doi 10.1016/j.niox.2016.04.002

    Article  PubMed  Google Scholar 

  5. Jin, Z.P., Shen, J.J., Qiao, Z.J., Yang, G.D., Wang, R., and Pei, Y.X., Biochem. Biophys. Res. Commun., 2011, vol. 414, no. 3, pp. 481–486.

    Article  CAS  PubMed  Google Scholar 

  6. Lai, D.W., Mao, Y., Zhou, H., Li, F., Wu, M., Zhang, J., He, Z., Cui, W., and Xie, Y., Plant Sci., 2014, vol. 225, no. 1, pp. 117–129.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, H., Ye, Y.K., Wang, S.H., Luo, J.P., Tang, J., and Ma, D.F., Plant Growth Regul., 2009, vol. 58, no. 3, pp. 243–250.

    Article  CAS  Google Scholar 

  8. Shi, H., Ye, T., and Chan, Z., Plant Physiol. Biochem., 2013, vol. 71, no. 2, pp. 226–234.

    Article  CAS  PubMed  Google Scholar 

  9. Li, Z.G., Min, X., and Zhou, Z.H., Front. Plant Sci., 2016, vol. 7:1621. doi 10.3389/fpls.2016.01621

    Google Scholar 

  10. Fu, P.N., Wang, W.J., Hou, L.X., and Liu, X., Acta Soc. Bot. Pol., 2013, vol. 82, no. 4, pp. 295–302.

    Article  CAS  Google Scholar 

  11. Li, Z.G. and Zhu, L.P., Braz. J. Bot., 2015, vol. 38, no. 1, pp. 31–38.

    Article  CAS  Google Scholar 

  12. Li, Z.G., Long, W.B., Yang, S.Z., Wang, Y.C., Tang, J.H., Wen, L., Zhu, B.Yu., and Min, X., Acta Physiol. Plant., 2015, vol. 37:219. doi 10.1007/s11738-015-1971-z

    Google Scholar 

  13. Christou, A., Filippou, P., Manganaris, G., and Fotopoulos, V., BMC Plant Biol, 2014, vol. 14:42. doi 10.1186/1471-2229-14-42

    Google Scholar 

  14. Wang, R., Physiol. Rev., 2012, vol. 92, no. 2, pp. 791–896.

    Article  CAS  PubMed  Google Scholar 

  15. Hancock, J.T. and Whiteman, M., Plant Physiol. Biochem., 2014, vol. 78, no. 1, pp. 37–42.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L., Ma, X., Che, Y., Hou, L., Liu, X., and Zhang, W., Sci. Bull., 2015, vol. 60, no. 4, pp. 419–427.

    Article  CAS  Google Scholar 

  17. Karpets, Yu.V., Kolupaev, Yu.E., Yastreb, T.O., and Dmitriev, O.P., Cytol. Genet., 2012, vol. 46, no. 6, pp. 354–359.

    Article  Google Scholar 

  18. Kolupaev, Yu.E. and Karpets, Yu.V., Ukr. Biochem. J., 2014, vol. 86, no. 4, pp. 18–35.

    Article  CAS  PubMed  Google Scholar 

  19. Glyan'ko, A.K. and Ishchenko, A.A., Appl. Biochem. Microbiol., 2010, vol. 46, no. 5, pp. 463–471.

    Article  Google Scholar 

  20. Kolupaev, Yu.E., Yastreb, T.O., Shvidenko, N.V., and Karpets, Yu.V., Appl. Biochem. Microbiol., 2012, vol. 48, no. 5, pp. 500–505.

    Article  CAS  Google Scholar 

  21. Shorning, B.Yu., Smirnova, E.G., Yaguzhinsky, L.S., and Vanyushin, B.F., Biochemistry (Moscow), 2000, vol. 65, no. 12, pp. 1357–1361.

    CAS  PubMed  Google Scholar 

  22. Kolupaev, Yu.E., Firsova, E.N., Yastreb, T.O., and Shvidenko, N.V., Bull. Kharkiv. Nats. Agrarn. Univ., Ser. Biol., 2017, no. 1 (40), pp. 61–68.

    Google Scholar 

  23. Liu, H.T., Huang, W.D., Pan, Q.H., Weng, F.H., Zhan, J.C., Liu, Y., Wan, S.B., and Liu, Y.Y., J. Plant Physiol., 2006, vol. 163, no. 4, pp. 405–416.

    Article  CAS  PubMed  Google Scholar 

  24. Sagisaka, S., Plant Physiol., 1976, vol. 57, no. 2, pp. 308–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A., and Oboznyi, A.I., Russ. J. Plant Physiol., 2014, vol. 61, no. 3, pp. 339–346.

    Article  CAS  Google Scholar 

  26. Lee, Y. and Lee, Y., Plant Signal. Behav., 2008, vol. 3, no. 4, pp. 211–213.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lecourieux, D., Mazars, C., Pauly, N., Ranjeva, R., and Pugin, A., Plant Cell, 2002, vol. 14, no. 10, pp. 2627–2641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, Z.G., Gong, M., Xie, H., Yang, L., and Li, J., Plant Sci., 2012, vol. 185-186, no. 1, pp. 185–189.

    Article  CAS  PubMed  Google Scholar 

  29. Fang, H.H., Pei, Y.X., Tian, B.H., Zhang, L.P., Qiao, Z.J., and Liu, Z.Q., Chin. J. Cell. Biol., 2014, vol. 36, no. 6, pp. 758–765.

    CAS  Google Scholar 

  30. Jin, Z., Xue, S., Luo, Y., Tian, B., Fang, H., Li, H., and Pei, Y., Plant Physiol. Biochem., 2013, vol. 62, no. 1, pp. 41–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Kolupaev.

Additional information

Original Russian Text © Yu.E. Kolupaev, E.N. Fіrsova, T.O. Yastreb, A.A. Lugovaya, 2017, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2017, Vol. 53, No. 5, pp. 502–509.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolupaev, Y.E., Firsova, E.N., Yastreb, T.O. et al. The Participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Appl Biochem Microbiol 53, 573–579 (2017). https://doi.org/10.1134/S0003683817050088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817050088

Keywords

Navigation