Skip to main content
Log in

Bacterial cellulose synthesized by Gluconacetobacter hansenii for medical applications

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The properties of a polymer synthesized by the Gluconacetobacter hansenii strain GH-1/2008 were investigated. The studied bacterial cellulose polymer films are characterized by a mesh nanostructure composed of micro- and macrofibrils, a high water absorption capacity 556 ± 16.8%, and high strength and elasticity. Analysis of the spectrum recorded by 13С CP/MAS NMR spectroscopy showed that the bacterial cellulose synthesized by G. hansenii GH-1/2008 is a pure compound composed of Iα (65–70%) and Iβ (30–35%) allomorphs without any other impurities. It was found that the bacterial cellulose films with adsorbed antibiotics such as amoxiclav and fluconazole can be used as antibacterial and antifungal wound healing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nguyen, V.T., Flanagan, B., Gidley, M.J., and Dykes, G.A., Curr. Microbiol., 2008, vol. 5, no. 57, pp. 449–453.

    Article  Google Scholar 

  2. Czaja, W., Krystynowicz, A., Bielecki, S., and Brown, R., Biomaterials, 2006, vol. 27, no. 2, pp. 145–151.

    Article  CAS  PubMed  Google Scholar 

  3. RF Patent no. 2415221, 2011.

  4. Nogi, M., Iwamoto, S., Nakagaito, A.N., and Yano, H., Adv. Mater., 2009, vol. 21, no. 16, pp. 1595—1598.

    Article  CAS  Google Scholar 

  5. Gromovykh, T.I., Fan, M.Kh., Danil’chuk, T.N., Abdrashitova, G.G., and Biryukov, E.G., Myasn. Industr., 2013, no. 4, pp. 32–35.

    Google Scholar 

  6. Hoenich, N., Bioresources, 2006, vol. 1, no. 2, pp. 270— 280.

    Google Scholar 

  7. Wei, B., Guang, Y., and Hong Feng, Carbohydr. Polym., 2011, vol. 5, no. 84, pp. 533–538.

    Article  Google Scholar 

  8. Khairullin, A.R., Temnikova, N.E., and Pautov, V.D., Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 2, pp. 89–91.

    CAS  Google Scholar 

  9. Turkoglu, N.L., Int. J. Biol. Macromol., 2014, vol. 67, pp. 22–27.

    Article  Google Scholar 

  10. Esguerra, M., Fink, H., Laschke, M.W., Jeppsson, A., Delbro, D., Gatenholm, P., Menger, M.D., and Risberg, B., J. Biomed. Mater., 2010, p. 93A, pp. 140–149.

    Google Scholar 

  11. Patchan, M.W., Chae, J., Lee, J.D., Calderon-Colon, X., Maranchi, J.P., McCally, R.L., Schein, O.D., Elisseeff, J.H., and Trexler, M.M., J. Biomater. Applicat., 2016, vol. 30, no. 7, pp. 1049–1059.

    Article  CAS  Google Scholar 

  12. Chawla, P.R., Bajaj, I.B., Survase, S.A., and Singhal, R.S., Food Technol. Biotechnol., 2009, vol. 47, no. 2, pp. 107–124.

    CAS  Google Scholar 

  13. Williams, W.S. and Cannon, R.E., Appl. Environ. Microbiol., 1989, vol. 55, no. 10, pp. 2448–2452.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jonas, R. and Farad, L.F., Polymer. Degrad. Stabil., 1998, vol. 59, pp. 101–106.

    Article  CAS  Google Scholar 

  15. Okamoto, T., Yamano, S., Ikeaga, H., and Nakamura, K., Appl. Microbiol. Biotechnol., 1994, vol. 42, no. 4, pp. 563—568.

    Article  CAS  PubMed  Google Scholar 

  16. Hoenich, N., Bioresources, 2006, vol. 1, no. 2, pp. 270— 280.

    Google Scholar 

  17. Zang, S., Qi, Z., Chang, X., Qiu, G., Wu, Z., and Guang, Y., Carbohydr. Polymers, 2014, vol. 104, pp. 158–165.

    Article  CAS  Google Scholar 

  18. Aung, B.J., Podiatry Today, 2004, vol. 17, no. 3, pp. 20–26.

    Google Scholar 

  19. Khan, T. and Park, J.K., Carbohydr. Polymers, 2008, vol. 73, no. 3, pp. 438–445.

    Article  CAS  Google Scholar 

  20. RF Patent no. 2464307, 2012.

  21. Schramm, M., Gromet, Z., and Hestrin, S., Biochem. J., 1957, vol. 67, no. 4, pp. 669–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruiz, J., Martin, D., Muriel, E., and Antequera, T., Food Chem., 2008, vol. 110, no. 4, pp. 1025–1029.

    Article  PubMed  Google Scholar 

  23. Bryce, D.L., Bernard, G.M., Gee, M., Lumsden, M.D., Eichele, K., and Wasylishen, R.E., Can. J. Anal. Sci. Spectrosc., 2001, vol. 46, no. 2, pp. 46–82.

    CAS  Google Scholar 

  24. Metodicheskie ukazaniya (MUK 4.2.1890) (Guidelines (MUK 4.2.1890)), Klin. Mikrobiol. Antimikr. Khimioter., 2004, vol. 6, no. 4, pp. 306–359.

  25. Atalla, R.H. and Vanderhart, D.L., Science, 1984, vol. 223, no. 4633, pp. 283–285.

    Article  CAS  PubMed  Google Scholar 

  26. Kono, H., Yunoki, Sh., Shikano, T., Fujiwara, M., Erata, T., and Takai, M., Chem. Soc., 2002, vol. 124, no. 25, pp. 7506—7511.

    Article  CAS  Google Scholar 

  27. Kono, H., Erata, T., and Taka, M., Macromolecules, 2003, vol. 36, no. 14, pp. 5131–5138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Gromovykh.

Additional information

Original Russian Text © T.I. Gromovykh, V.S. Sadykova, S.V. Lutcenko, A.S. Dmitrenok, N.B. Feldman, T.N. Danilchuk, V.V. Kashirin, 2017, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2017, Vol. 53, No. 1, pp. 69–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromovykh, T.I., Sadykova, V.S., Lutcenko, S.V. et al. Bacterial cellulose synthesized by Gluconacetobacter hansenii for medical applications. Appl Biochem Microbiol 53, 60–67 (2017). https://doi.org/10.1134/S0003683817010094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817010094

Keywords

Navigation