Skip to main content
Log in

Improving the Calculation of the Sulfate Aerosol Evolution and Radiative Effects in the Institute of Numerical Mathematics, Russian Academy of Sciences, Climate Model

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

An Erratum to this article was published on 28 April 2022

This article has been updated

Abstract

Improvements in simulations of sulfate aerosol from natural dimethyl sulfide (DMS) emissions in the climate model of the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS) provide a better agreement between new model estimates of aerosol optical thickness (AOT) and the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis data. These data and the latest recommended emissions are used to estimate radiative forcing effects (RFEs) of the sulfate aerosol of different origin at the top of the atmosphere. The maximum (in absolute values) radiative effect of natural sulfate aerosol is observed due to high DMS emissions over the marine coast of Antarctica, where the annual mean RFE is –0.14 W m–2 (up to –0.45 W m–2 in January). For the 25°–45° N area, zonally averaged annual RFEs due to anthropogenic emissions exceed –0.7 W m–2. The average global annual RFE of sulfate aerosol for 2005 is –0.36 W m–2 and hardly changes at all by season. Overall, the fraction of the RFE from natural sulfate aerosol is 20%, but there are significant variations in this value from month to month, with a maximum in January, when this fraction reaches 37%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Change history

REFERENCES

  1. IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, (Cambridge Univ. Press, New York, 2013).

    Google Scholar 

  2. G. Myhre, B. H. Samset, M. Schulz, Y. Balkanski, S. Bauer, T. K. Berntsen, H. Bian, N. Bellouin, M. Chin, T. Diehl, R. C. Easter, J. Feichter, S. J. Ghan, D. Hauglustaine, T. Iversen, S. Kinne, A. Kirkevag, J.‑F. Lamarque, G. Lin, X. Liu, M. T. Lund, G. Luo, X. Ma, T. van Noije, J. E. Penner, P. J. Rasch, A. Ruiz, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, P. Wang, Z. Wang, L. Xu, H. Yu, F. Yu, J. -H. Yoon, K. Zhang, H. Zhang, and C. Zhou, “Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations,” Atmos. Chem. Phys. 13, 1853–1877 (2013a).

    Article  Google Scholar 

  3. G. Myhre, C. E. L. Myhre, B. H. Samset, and T. Storelvmo, “Aerosols and their relation to global climate and climate sensitivity,” Nat. Educ. Knowl. 4 (5), 7 (2013b).

    Google Scholar 

  4. O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S. K. Satheesh, S. Sherwood, B. Stevens, and X. Y. Zhang, “Clouds and aerosols,” in Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, New York, 2013), pp. 571–659.

    Google Scholar 

  5. A. Rap, C. E. Scott, D. V. Spracklen, N. Bellouin, P. M. Forster, K. S. Carslaw, A. Schmidt, and G. Mann, “Natural aerosol direct and indirect radiative effects,” Geophys. Res. Lett. 40, 3297–3301 (2013).

    Article  Google Scholar 

  6. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (John Wiley and Sons, 2016).

    Google Scholar 

  7. G. Zheng, Y. Wang, R. Wood, et al., “New particle formation in the remote marine boundary layer,” Nat. Commun. 12 (527), 1–10 (2021).

    Article  Google Scholar 

  8. R. M. Hoesly, S. J. Smith, L. Feng, Z. Klimont, G. Janssens-Maenhout, T. Pitkanen, J. J. Seibert, L. Vu, R. J. Andres, R. M. Bolt, T. C. Bond, L. Dawidowski, N. Kholod, J.-I. Kurokawa, M. Li, L. Liu, Z. Lu, M. C. P. Moura, P. R. O’Rourke, and Q. Zhang, “Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS),” Geosci. Model Dev. 11, 369–408 (2018).

    Article  Google Scholar 

  9. M. O. Andreae, “Ocean–atmosphere interactions in the global biogeochemical sulfur cycle,” Mar. Chem. 30, 1–29 (1990).

    Article  Google Scholar 

  10. M. Chin, R. B. Rood, S.-J. Lin, J.-F. Müller, and A. M. Thompson, “Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties,” J. Geophys. Res., Atmos. 105 (D20), 671–24687 (2000a).

    Google Scholar 

  11. M. Chin, D. L. Savoie, B. J. Huebert, A. R. Bandy, D. C. Thornton, T. S. Bates, P. K. Quinn, E. S. Saltzman, and W. J. De Bruyn, “Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets,” J. Geophys. Res., Atmos. 105 (D20), 24689–24712 (2000b).

    Article  Google Scholar 

  12. M. Chin, D. J. Jacob, G. M. Gardner, M. S. Foreman-Fowler, P. A. Spiro, and D. L. Savoie, “A global three-dimensional model of tropospheric sulfate,” J. Geophys. Res.: Atmos. 101 (D13), 18667–18690 (1996).

    Article  Google Scholar 

  13. M. A. Chin and D. J. Jacob, “Anthropogenic and natural contributions to tropospheric sulfate: A global model analysis,” J. Geophys. Res. 101, 18691–18699 (1996).

    Article  Google Scholar 

  14. Y. Yang, H. Wang, S. J. Smith, R. C. Easter, and P. J. Rasch, “Sulfate aerosol in the Arctic: Source attribution and radiative forcing,” J. Geophys. Res.: Atmos. 123, 1899–1918 (2018).

    Article  Google Scholar 

  15. K. S. Carslaw, O. Boucher, D. V. Spracklen, G. W. Mann, J. G. L. Rae, S. Woodward, and M. Kulmala, “A review of natural aerosol interactions and feedbacks within the Earth system,” Atmos. Chem. Phys. 10, 1701–1737 (2010).

    Article  Google Scholar 

  16. E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykossov, A. S. Gritsun, N. A. Diansky, A. V. Gusev, N. G. Iakovlev, A. A. Shestakova, and S. V. Emelina, “Simulation of the modern climate using the INM-CM48 climate model,” Russ. J. Numer. Anal. Math. Modell. 33 (6), 367–374 (2018).

    Article  Google Scholar 

  17. E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system,” Izv., Atmos. Ocean. Phys. 49 (4), 347–366 (2013).

    Article  Google Scholar 

  18. E. M. Volodin and S. V. Kostrykin, “The aerosol module in the INM RAS climate model,” Russ. Meteorol. Hydrol. 41 (8), 519–528 (2016).

    Article  Google Scholar 

  19. J. Putaud and C. Nguyen, “Assessment of dimethylsulfide sea–air exchange rate,” J. Geophys. Res. 101 (D2), 4403–4441 (1996).

    Article  Google Scholar 

  20. A. Kettle, M. Andreae, D. Amourou, et al., “A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month,” Global Biogeochem. Cycles 13 (2), 399–444 (1999).

    Article  Google Scholar 

  21. J.-J. Morcrette, O. Boucher, L. Jones, D. Salmond, P. Bechtold, A. Beljaars, et al., “Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling,” J. Geophys. Res. 114, D06206 (2009).

    Article  Google Scholar 

  22. R. W. Gelaro, M. J. McCarty, R. Suárez, A. Todling, L. Molod, L. Takacs, C. A. Randles, et al., “The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2),” J. Clim. 30 (14), 5419–5454 (2017). https://doi.org/10.1175/JCLI-D-16-0758.1

    Article  Google Scholar 

  23. P. Courtier, J. N. Thépaut, and A. Hollingsworth, “A strategy for operational implementation of 4D-Var, using an incremental approach,” Q. J. R. Meteorol. Soc. 120 (519), 1367–1387 (1994).

    Article  Google Scholar 

  24. A. Molod, L. Takacs, M. Suárez, and J. Bacmeister, “Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2,” Geosci. Model Dev. 8, 1339–1356 (2015).

    Article  Google Scholar 

  25. D. Kleist, D. Parrish, J. Derber, R. Treadon, R. Errico, and R. Yang, “Improving incremental balance in the GSI 3D-VAR analysis system,” Mon. Weather Rev. 137 (3), 1046–1060 (2008). https://doi.org/10.1175/2008MWR2623.1

    Article  Google Scholar 

  26. W.-L. Wang, G. Song, F. Primeau, E. S. Saltzman, T. G. Bell, and J. K. Moore, “Global ocean dimethylsulfide climatology estimated from observations and an artificial neural network,” Biogeosciences 17, 5335–5354 (2020).

    Article  Google Scholar 

  27. L. Goddijn-Murphy, D. K. Woolf, and C. Marandino, “Space-based retrievals of air–sea gas transfer velocities using altimeters: Calibration for dimethylsulfide,” J. Geophys. Res. 117, C08028 (2012).

    Article  Google Scholar 

  28. E. S. Saltzman, D. B. King, K. Holmen, and C. Leck, “Experimental determination of the diffusion coefficient of dimethylsulfide in water,” J. Geophys. Res. 98, 16481–16486 (1993).

    Article  Google Scholar 

  29. Clouds and Cloudy Atmosphere. A Reference Book, Ed. by I. P. Mazin and A. Kh. Khrgian (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  30. U. Lohmann, J. Feichter, C. Chuang, and J. Penner, “Prediction of the number of cloud droplets in the ECHAM GCM,” J. Geophys. Res. 104 (D8), 9169–9198 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. E. Chubarova, A. A. Poliukhov or E. M. Volodin.

Additional information

Translated by N. Tret’yakova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chubarova, N.E., Poliukhov, A.A. & Volodin, E.M. Improving the Calculation of the Sulfate Aerosol Evolution and Radiative Effects in the Institute of Numerical Mathematics, Russian Academy of Sciences, Climate Model. Izv. Atmos. Ocean. Phys. 57, 370–378 (2021). https://doi.org/10.1134/S0001433821040150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821040150

Keywords:

Navigation