Skip to main content
Log in

Estimating helicity in the atmospheric boundary layer from acoustic sounding data

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Distributions of the velocity-field helicity in the atmospheric boundary layer have been obtained from acoustic sounding data. The helicity of large-scale motions (0.3–0.6 m/s2) exceeds (by an order of magnitude) its independently measured turbulent values, which are close to helicity averaged over the layer (0.02–0.12 m/s2). In the absence of strong convection, there is good correlation between helicity and wind velocity squared at upper sounding levels of 400 to 600 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Markovski and Y. Richardson, Mesoscale Meteorology in Midlatitude (John Wiley and Sons, Chichester, 2010).

    Book  Google Scholar 

  2. N. F. Vel’tishchev and V. M. Stepanenko, Mesometeorological Processes. A Textbook (MGU, Moscow, 2006).

    Google Scholar 

  3. I. G. Granberg, V. F. Kramar, R. D. Kuznetsov, O. G. Chkhetiani, M. A. Kallistratova, S. N. Kulichkov, M. S. Artamonova, D. D. Kuznetsov, V. G. Perepelkin, V. V. Perepelkin, and F. A. Pogarskii, “A study of the spatial structure of the atmospheric boundary layer with a Doppler-sodar network,” Izv., Atmos. Ocean. Phys. 45 (5), pp. 541–548 (2009).

    Article  Google Scholar 

  4. D. Etling and R. A. Brown, “Roll vortices in the planetary boundary layer. A review,” Boundary-Layer Meteorol. 65, 215–248 (1993).

    Article  Google Scholar 

  5. S.-H. Chou and M. P. Ferguson, “Heat fluxes and roll circulations over the western Gulf Stream during an intense cold-air outbreak,” Boundary-Layer Meteorol. 55 (3), 255–281 (1991).

    Article  Google Scholar 

  6. J. Wurman and J. Winslow, “Intense sub-kilometerscale boundary layer rolls observed in Hurricane Fran,” Science 280 (5363), 555–557 (1998).

    Article  Google Scholar 

  7. H. Morrison, J. A. Curry, and V. I. Khvorostyanov, “A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description,” J. Atmos. Sci. 62 (6), 1665–1677 (2005).

    Article  Google Scholar 

  8. M. V. Kurgansky, Introduction to large-scale atmospheric dynamics (Adiabatic invariants and their use) (Gidrometeoizdat, St. Petersburg, 1993) [In Russian].

    Google Scholar 

  9. D. Etling, “Some aspect of helicity in atmospheric flows,” Beitr. Phys. Atmos. 58 (1), 88–100 (1985).

    Google Scholar 

  10. M. V. Kurgansky, “Relationship between helicity and potential vorticity in a compressible rotating fluid,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 25 (12), 979–981 (1989).

    Google Scholar 

  11. R. Hide, “Superhelicity, helicity and potential vorticity,” Geophys. Astrophys. Fluid Dyn. 48 (1–3), 69–79 (1989).

    Article  Google Scholar 

  12. O. G. Chkhetiani, “On the helical structure of the Ekman boundary layer,” Izv., Atmos Ocean. Phys. 37(5), 569–575 (2001).

    Google Scholar 

  13. B. M. Koprov, V. M. Koprov, V. M. Ponomarev, and O. G. Chkhetiani, “Experimental studies of turbulent helicity and its spectrum in the atmospheric boundary layer,” Dokl. Phys. 50 (8), 419–422 (2005).

    Article  Google Scholar 

  14. B. M. Koprov, V. M. Koprov, M. V. Kurgansky, and O. G. Chkhetiani, “Helicity and potential vorticity in surface turbulence,” Izv., Atmos. Ocean. Phys. 51 (6), 565–575 (2015).

    Article  Google Scholar 

  15. E. Deusebio and E. Lindborg, “Helicity in the Ekman boundary layer,” J. Fluid Mech. 755, 654–671 (2014).

    Article  Google Scholar 

  16. M. V. Kurgansky, “Helicity in dynamic atmospheric processes,” Izv., Atmos. Ocean. Phys. 53 (2) 127–141 (2017).

    Article  Google Scholar 

  17. V. M. Ponomarev and O. G. Chkhetiani, “Semiempirical model of the atmospheric boundary layer with parametrization of turbulent helicity effect,” Izv., Atmos Ocean. Phys. 41 (4), 418–432 (2005).

    Google Scholar 

  18. H. Pichler and A. Schaffhauser, “The synoptic meaning of helicity,” Meteorol. Atmos. Phys. 66, 23–34 (1998).

    Article  Google Scholar 

  19. I. A. Repina, B. V. Ivanov, and R. D. Kuznetsov, “Measurement of the katabatic wind turbulent structure in the Spitsbergen coastal zone,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, No. 2, 180–188 (2009).

    Google Scholar 

  20. R. A. Brown, Analytical Methods in Planetary Boundary-Layer Modeling (New York, Wiley, 1974; Gidrometeoizdat, Leningrad, 1978).

    Google Scholar 

  21. N. L. Byzova, V. N. Ivanov, and E. K. Garger, Turbulence in the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1989) [In Russian].

    Google Scholar 

  22. G. I. Taylor, “Eddy motion in the atmosphere,” Philos. Trans. R. Soc. London 215, 523–537 (1915).

    Article  Google Scholar 

  23. M. A. Kallistratova, R. D. Kuznetsov, and I. V. Petenko, “The implementation of A.M. Obukhov’s idea on ground-based remote sensing of the lower troposphere by acoustic and electromagnetic waves,” in Turbulence, Dynamics of the Atmosphere and Climate: Proceedings of the International Conference in Commemoration of Academician A. M. Obukhov (May 13–16, 2013), Ed. by G. S. Golitsyn, I. I. Mokhov, S. N. Kulichkov, M. V. Kurgansky, and O. G. Chkhetiani (GEOS, Moscow, 2014), pp. 593–620 [in Russian].

    Google Scholar 

  24. G. H. Crescenti, “A look back on two decades of doppler sodar comparison studies,” Bull. Am. Meteorol. Soc. 78, 651–673 (1997).

    Article  Google Scholar 

  25. R. L. Coulter and M. A. Kallistratova, “The role of acoustic sounding in a high technology era,” Meteorol. Atmos. Phys. 71, 3–13 (1999).

    Article  Google Scholar 

  26. S. Emeis, Surface-Based Remote Sensing of the Atmospheric Boundary Layer (Springer, 2011), Chap. 3. doi 10.1007/978-90-481-9340-0

    Book  Google Scholar 

  27. P. S. Anderson, R. S. Ladkin, and I. A. Renfrew, “An autonomous Doppler sodar wind profiling system,” J. Atmos. Oceanic Technol. 22, 1309–1325 (2005).

    Article  Google Scholar 

  28. M. A. Kallistratova, R. D. Kouznetsov, V. F. Kramar, and D. D. Kuznetsov, “Profiles of vertical wind speed variances within nocturnal low-level jets observed with a sodar,” J. Atmos. Oceanic Technol. 30, 1970–1977. doi 10.1175/JTECH-D-12-00265.1

    Google Scholar 

  29. R. D. Kuznetsov, “Acoustic sounder LATAN-3 for studies of the atmospheric boundary layer,” Opt. Atmos. Okeana 20 (8), 749–753 (2007).

    Google Scholar 

  30. R. D. Kouznetsov, “The multi-frequency sodar with high temporal resolution,” Meteorol. Z. 18 (2), 169–173 (2009).

    Article  Google Scholar 

  31. R. Cieszelski, “Studies on turbulence parametrizations for flows with helicity,” Izv., Atmos Ocean. Phys. 35 (2), 157–170 (1999).

    Google Scholar 

  32. W. C. Skamarock, J. B. Klemp, I. Dudhia, et al., A Description of the Advanced Research WRF Version 3, NCAR Tech. Note 475, June 2008.

    Google Scholar 

  33. N. F. Vel’tishchev and V. D. Zhupanov, Numerical Weather Predictions with WRF-ARW and WRF-NMM Nonhydrostatic Models in General Use (TRIADA, Moscow, 2010), pp. 94–135 [In Russian].

    Google Scholar 

  34. E. V. Nabokova, “Attempt of WRF model application with two methods of urban layer parameterization for the prediction of air temperature and wind velocity,” in Transactions of the Hydrometeorological Center of the Russian Federation, Atmospheric Physics and Weather Forecast (GMTs RF, Moscow, 2010), No. 344, 180–195 [In Russian].

    Google Scholar 

  35. K. G. Rubinshtein, E. V. Nabokova, R. Yu. Ignatov, M. M. Smirnova, R. V. Arutyunyan, V. N. Semenov, O. S. Sorokovikova, and A. V. Fokin, “Influence of parameterization methods for boundary layer processes in the WRF model on the prediction of wind velocity and the results of admixture transport simulation,” Transactions of the Hydrometeorological Center of the Russian Federation, Atmospheric Physics and Weather Forecast (GMTs RF, Moscow, 2010), No. 344, pp. 196–213 [In Russian].

    Google Scholar 

  36. D. M. Barker, W. Huang, Y. R. Guo, and Q. N. Xiao, “System for use with MM5: Implementation and initial results,” Mon. Weather Rev., 132, 897–914 (2004).

    Article  Google Scholar 

  37. J. R. Holton, An Introduction to Dynamic Meteorology (Elsevier, Burlington, 2004).

    Google Scholar 

  38. R. A. Maddox, “Diurnal low-level wind oscillation and storm-relative helicity,” in The Tornado: Its Structure, Dynamics, Prediction, and Hazards (AGU, Washington, D.C., 1993), pp. 591–598.

    Chapter  Google Scholar 

  39. B. M. Koprov, V. M. Koprov, M. V. Kurgansky, and O. G. Chkhetiani, “Helicity of atmospheric turbulence,” in Turbulence and Wave Processes: Book of Abstracts of the International Conference in Commemoration of the Centenary of the Birth of M. D. Millionshchikov (Intuit.ru, Moscow, 2013), pp. 26–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vazaeva.

Additional information

Original Russian Text © N.V. Vazaeva, O.G. Chkhetiani, R.D. Kouznetsov, M.A. Kallistratova, V.F. Kramar, V.S. Lyulyukin, D.D. Kuznetsov, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 2, pp. 200–214.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazaeva, N.V., Chkhetiani, O.G., Kouznetsov, R.D. et al. Estimating helicity in the atmospheric boundary layer from acoustic sounding data. Izv. Atmos. Ocean. Phys. 53, 174–186 (2017). https://doi.org/10.1134/S0001433817020104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817020104

Keywords

Navigation