Skip to main content
Log in

Helicity in dynamic atmospheric processes

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

An overview on the helicity of the velocity field and the role played by this concept in modern research in the field of geophysical fluid dynamics and dynamic meteorology is given. Different (both previously known in the literature and first presented) formulations of the equation of helicity balance in atmospheric motions (including those with allowance for effects of air compressibility and Earth’s rotation) are brought together. Equations and relationships are given which are valid in different approximations accepted in dynamic meteorology: Boussinesq approximation, quasi-static approximation, and quasi-geostrophic approximation. Emphasis is placed on the analysis of helicity budget in large-scale quasi-geostrophic systems of motion; a formula for the helicity flux across the upper boundary of the nonlinear Ekman boundary layer is given, and this flux is shown to be exactly compensated for by the helicity destruction inside the Ekman boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. K. Tippett, A. H. Sobel, S. J. Camargo, et al., “An empirical relation between U.S. tornado activity and monthly environmental parameters,” J. Clim. 27 (8), 2983–2999 (2014).

    Article  Google Scholar 

  2. T. M. Smith, J. Gao, K. M. Calhoun, et al., “Examination of a real-time 3DVAR analysis system in the hazardous weather testbed,” Weather Forecasting 29 (1), 63–77 (2014).

    Article  Google Scholar 

  3. A. J. Clark, J. S. Kain, P. T. Marsh, et al., “Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts,” Weather Forecasting 27 (5), 1090–1113 (2012).

    Article  Google Scholar 

  4. A. J. Clark, J. Gao, P. T. Marsh, et al., “Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity,” Weather Forecasting 28 (2), 387–407 (2013).

    Article  Google Scholar 

  5. S. Fu, W. Li, J. Sun, et al., “A budget analysis of a longlived tropical mesoscale vortex over Hainan in October 2010,” Meteorol. Atmos. Phys. 114 (1–2), 51–65 (2011).

    Google Scholar 

  6. G. Levina, E. Glebova, A. Naumov, et al., “Application of helical characteristics of the velocity field to evaluate the intensity of tropical cyclones,” in Progress in Turbulence III, Springer Proceedings in Physics, Ed. by J. Peinke, M. Oberlack, and A. Talameli (Springer, Berlin, 2008), vol. 131, pp. 259–262.

    Google Scholar 

  7. J. Molinari and D. Vollaro, “Distribution of helicity, CAPE, and shear in tropical cyclones,” J. Atmos. Sci. 67 (1), 274–284 (2010).

    Article  Google Scholar 

  8. Z. Yu and H. Yu, “Relation of the second type thermal helicity to precipitation of landfalling typhoons: A case study of Typhoon Talim,” Acta Meteorol. Sin. 25 (2), 224–237 (2011).

    Article  Google Scholar 

  9. O. G. Chkhetiani and E. Golbraikh, “Turbulent field helicity fluctuations and mean helicity appearance,” Int. J. Nonlinear Mech. 47 (3), 113–117 (2012).

    Article  Google Scholar 

  10. C. Yu, R. Hong, Z. Xiao, et al., “Subgrid-scale eddy viscosity model for helical turbulence,” Phys. Fluids 25 (9), 095101 (2013).

    Article  Google Scholar 

  11. C. Rorai, D. Rosenberg, A. Pouquet, et al., “Helicity dynamics in stratified turbulence in the absence of forcing,” Phys. Rev. E 87 (6), 063007 (2013).

    Article  Google Scholar 

  12. B. M. Koprov, V. M. Koprov, V. M. Ponomarev, and O. G. Chkhetiani, “Experimental studies of turbulent helicity and its spectrum in the atmospheric boundary layer,” Dokl. Phys. 50 (8), 419–422 (2005).

    Article  Google Scholar 

  13. B. M. Koprov, V. M. Koprov, M. V. Kurgansky, and O. G. Chkhetiani, “Helicity and potential vorticity in surface turbulence,” Izv. Atmos. Ocean. Phys. 51 (6), 565–575 (2015).

    Article  Google Scholar 

  14. D. Etling, “Some aspects of helicity in atmospheric flows,” Beitr. Phys. Atmos. 58 (1), 88–100 (1985).

    Google Scholar 

  15. M. V. Kurgansky, Doctoral Dissertation in Physics and Mathematics (Hydrometeorol. Sci. Res. Center, Moscow, 1990).

    Google Scholar 

  16. H. Bluestein, Synoptic–Dynamic Meteorology in Midlatitudes: Principles of Kinematics and Dynamics (Oxford University Press, Oxford, 1992), vol. 1.

    Google Scholar 

  17. J.-J. Moreau, “Constantes d’un îlot tourbillonnaire en fluide parfait barotrope,” C. R. Acad. Sci. Paris 252, 2810–2813 (1961).

    Google Scholar 

  18. H. K. Moffatt, “The degree of knottedness of tangled vortex lines,” J. Fluid Mech. 35 (1), 117–129 (1969).

    Article  Google Scholar 

  19. A. S. Goldhaber and M. Goldhaber, “The neutrino’s elusive helicity reversal,” Phys. Today 64 (5), 40–43 (2011).

    Article  Google Scholar 

  20. H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press, Cambridge, 1978; Mir, Moscow, 1980).

    Google Scholar 

  21. F. Krause and K.-H. Raedler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Academie, Berlin, 1980).

    Google Scholar 

  22. A. D. Gilbert, U. Frisch, and A. Pouquet, “Helicity is unnecessary for alpha-effect dynamos, but it helps,” Geophys. Astrophys. Fluid Dyn. 42 (1–2), 151–161 (1988).

    Article  Google Scholar 

  23. R. Komm, S. Gosain, and A. Pevtsov, “Hemispheric distribution of subsurface kinetic helicity and its variation with magnetic activity,” Sol. Phys. 289 (7), 2399–2418 (2014).

    Article  Google Scholar 

  24. S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, et al., “Theory of the origin of large-scale structures in hydrodynamic turbulence,” Zh. Eksp. Teor. Fiz. 85 (6), 1979–1987 (1983).

    Google Scholar 

  25. S. S. Moiseev, P. B. Rutkevich, A. V. Tur, and V. V. Yanovskii, “Vortex dynamo in a convective medium with helical turbulence,” Zh. Eksp. Teor. Fiz. 94 (2), 144–153 (1988).

    Google Scholar 

  26. C. G. Speziale, “On helicity fluctuations and the energy cascade in turbulence,” in Recent Advances in Engineering Science, A Symposium Dedicated to A. Cemal Eringen, June 20–22, 1988, Berkley, California (Lect. Notes Eng. 39), Ed. by S. L. Koh and C. G. Speziale (Springer, Berlin, 1989), pp. 50–57.

    Google Scholar 

  27. S. Chakraborty, “Signatures of two-dimensionalisation of 3D turbulence in the presence of rotation,” Europhys. Lett. 79 (1), 14002 (2007).

    Article  Google Scholar 

  28. P. D. Mininni and A. Pouquet, “Rotating helical turbulence. I. Global evolution and spectral behavior,” Phys. Fluids 22 (3), 035105 (2010).

    Article  Google Scholar 

  29. P. D. Mininni and A. Pouquet, “Rotating helical turbulence. II. Intermittency, scale invariance, and structures,” Phys. Fluids 22 (3), 035106 (2010).

    Article  Google Scholar 

  30. A. Pouquet and P. D. Mininni, “The interplay between helicity and rotation in turbulence: Implications for scaling laws and small-scale dynamics,” Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 368 (1916), 1635–1662 (2010).

    Article  Google Scholar 

  31. L. Biferale, S. Musacchio, and F. Toschi, “Inverse energy cascade in three-dimensional isotropic turbulence,” Phys. Rev. Lett. 108 (16), 164501 (2012).

    Article  Google Scholar 

  32. E. B. Gledzer and O. G. Chkhetiani, “Inverse energy cascade in developed turbulence at the breaking of the symmetry of helical modes,” JETP Lett. 102 (7), 465–472 (2015).

    Article  Google Scholar 

  33. E. B. Gledzer, “System of hydrodynamic type admitting two quadratic integrals of motion,” Dokl. Akad. Nauk SSSR 209 (5), 1046–1048 (1973).

    Google Scholar 

  34. O. G. Chkhetiani, “On the third moments in helical turbulence,” Pis’ma Zh. Eksp. Teor. Fiz. 63 (10), 768–772 (1996).

    Google Scholar 

  35. O. G. Chkhetiani, “On the local structure of helical turbulence,” Dokl. Phys. 53 (10), 513–516 (2008).

    Article  Google Scholar 

  36. G. S., Golitsyn, The Statistics and Dynamics of Natural Processes and Phenomena: Methods, Instrumentation, and Results (Krasand, Moscow, 2012) [In Russian].

    Google Scholar 

  37. R. H. Kraichnan, “Helical turbulence and absolute equilibrium,” J. Fluid Mech. 57 (4), 745–752 (1973).

    Article  Google Scholar 

  38. K. M. Kanak and D. K. Lilly, “The linear stability and structure of convection in a circular mean shear,” J. Atmos. Sci. 53 (18), 2578–2593 (1996).

    Article  Google Scholar 

  39. Y. Nambu, “Generalized Hamiltonian dynamics,” Phys. Rev. D: Part. Fields 7 (8), 2405–2412 (1973).

    Article  Google Scholar 

  40. P. Névir and R. Blender, “A Nambu representation of incompressible hydrodynamics using helicity and enstrophy,” J. Phys. A: Math. Gen. 26 (22), L1189–L1193 (1993).

    Article  Google Scholar 

  41. R. Salmon, “A general method for conserving quantities related to potential vorticity in numerical models,” Nonlinearity 18 (5), R1–R16 (2005).

    Article  Google Scholar 

  42. R. Salmon, “A general method for conserving energy and potential enstrophy in shallow-water models,” J. Atmos. Sci. 64, 515–530 (2007).

    Article  Google Scholar 

  43. R. Hide, “Superhelicity, helicity and potential vorticity,” Geophys. Astrophys. Fluid Dyn. 48, 69–79 (1989).

    Article  Google Scholar 

  44. D. K. Lilly, “The structure, energetics and propagation of rotating convective storms. 2: Helicity and storm stabilization,” J. Atmos. Sci. 42 (2), 126–140 (1986).

    Article  Google Scholar 

  45. W.-S. Wu, D. K. Lilly, and R. M. Kerr, “Helicity and thermal convection with shear,” J. Atmos. Sci. 49, 1800–1809 (1992).

    Article  Google Scholar 

  46. M. V. Kurgansky, “Helicity production and maintenance in a baroclinic atmosphere,” Meteorol. Z 15 (3), 1–8 (2006).

    Google Scholar 

  47. A. M. Obukhov, “On stratified fluid dynamics,” Dokl. Akad. Nauk SSSR 145 (6), 1239–1242 (1962).

    Google Scholar 

  48. P. H. Haynes and M. E. McIntyre, “On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces,” J. Atmos. Sci. 44 (5), 828–841 (1987).

    Article  Google Scholar 

  49. P. H. Haynes and M. E. McIntyre, “On the conservation and impermeability theorems for potential vorticity,” J. Atmos. Sci. 47 (16), 2021–2031 (1990).

    Article  Google Scholar 

  50. M. V. Kurgansky, Introduction to Large-Scale Atmospheric Dynamics (Adiabatic Invariants and Their Use) (Gidrometeoizdat, St. Petersburg, 1993) [In Russian].

    Google Scholar 

  51. M. V. Kurgansky, Adiabatic Invariants in Large-Scale Atmospheric Dynamics (Taylor and Francis, London–New York, 2002).

    Book  Google Scholar 

  52. M. V. Kurgansky, “On the relationship between helicity and potential vortex in a compressible rotating fluid,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 25 (12), 1326–1329 (1989).

    Google Scholar 

  53. K. K. Droegemeier, S. M. Lazarus, and R. Davies-Jones, “The Influence of helicity on numerically simulated convective storms,” Mon. Weather Rev. 121 (7), 2005–2029 (1993).

    Article  Google Scholar 

  54. P. M. Markowski, J. M. Straka, E. N. Rasmussen, and D. O. Blanchard, “Variability of storm-relative helicity during VORTEX,” Mon. Weather Rev. 126 (11), 2959–2971 (1998).

    Article  Google Scholar 

  55. C. A. Doswell and D. M. Schultz, “On the use of indices and parameters in forecasting severe storms,” E-J. Severe Storms Meteorol. 1 (3) (2006).

    Google Scholar 

  56. Y. Han, R. Wu, and J. Fang, “Shearing wind helicity and thermal wind helicity,” Adv. Atmos. Sci. 23 (4), 504–512 (2006).

    Article  Google Scholar 

  57. G. V. Levina and M. T. Montgomery, “A first examination of the helical nature of tropical cyclogenesis,” Dokl. Earth Sci. 434 (1), 1285–1289 (2010).

    Article  Google Scholar 

  58. G. V. Levina and M. T. Montgomery, “Helical scenario of tropical cyclone genesis and intensification,” J. Phys. Conf. Ser. 318 (7), 072012 (2011).

    Article  Google Scholar 

  59. A. A. Lavrova, E. S. Glebova, I. V. Trosnikov, and V. D. Kaznacheeva, “Modeling the evolution of the family of Mediterranean cyclones using the regional model of the atmosphere,” Russ. Meteorol. Hydrol. 35 (6), 363–370 (2010).

    Article  Google Scholar 

  60. Zh. Tan and R. Wu, “Helicity dynamics of atmospheric flow,” Adv. Atmos. Sci. 11 (2), 175–188 (1994).

    Article  Google Scholar 

  61. O. G. Chkhetiani, “On the helical structure of the Ekman boundary layer,” Izv., Atmos Ocean. Phys. 37(5), 569–575 (2001).

    Google Scholar 

  62. V. M. Ponomarev, A. A. Khapaev, and O. G. Chkhetiani, “Role of helicity in the formation of secondary structures in the Ekman boundary layer,” Izv., Atmos Ocean. Phys. 39 (4), 391–400 (2003).

    Google Scholar 

  63. V. M. Ponomarev and O. G. Chkhetiani, “Semiempirical model of the atmospheric boundary layer with parametrization of turbulent helicity effect,” Izv., Atmos Ocean. Phys. 41 (4), 418–432 (2005).

    Google Scholar 

  64. E. Deusebio and E. Lindborg, “Helicity in the Ekman boundary layer,” J. Fluid Mech. 755, 654–671 (2014).

    Article  Google Scholar 

  65. E. Levich and E. Tzvetkov, “Helicity inverse cascade in three-dimensional turbulence as a fundamental dynamical mechanism in mesoscale atmospheric phenomena,” Phys. Rep. 128 (1), 1–37 (1985).

    Article  Google Scholar 

  66. R. Cieszelski, “Studies on turbulence parametrizations for flows with helicity,” Izv., Atmos Ocean. Phys. 35 (2), 157–170 (1999).

    Google Scholar 

  67. M. V. Kurgansky, “Simple models of helical baroclinic vortices,” Procedia IUTAM 7, 193–202 (2013).

    Article  Google Scholar 

  68. E. A. Novikov, “Vorticity flux,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 8 (7), 759–762 (1972).

    Google Scholar 

  69. V. I. Arnol’d and B. A. Khesin, Topological Methods in Hydrodynamics (Springer, New York, 1999; MTsNMO, Moscow, 2007).

    Google Scholar 

  70. R. Hide, “A note on helicity,” Geophys. Fluid Dyn. 7, 157–161 (1976).

    Article  Google Scholar 

  71. M. V. Kurgansky, “Vertical helicity flux in atmospheric vortices as a measure of their intensity,” Izv., Atmos Ocean. Phys. 44 (1), 64–71 (2008).

    Google Scholar 

  72. E. S. Glebova, G. V. Levina, A. D. Naumov, and I. V. Trosnikov, “The helical feature calculation for the velocity field of a developing tropical cyclone,” Russ. Meteorol. Hydrol. 34 (9), 572–580 (2009).

    Article  Google Scholar 

  73. M. V. Kurgansky, “Relationship between helicity and potential vortex in a compressible rotating fluid,” in Turbulence, Atmosphere and Climate Dynamics: Collected Papers of the International Conference Dedicated to the Memory of Academician A. M. Obukhov (May 13–16, 2013), Ed. by G. S. Golitsyn, I. I. Mokhov, S. N. Kulichkov et al. (GEOS, Moscow, 2014), pp. 119–130 [in Russian].

    Google Scholar 

  74. A. O. Levshin and O. G. Chkhetiani, “Decay of helicity in homogeneous turbulence,” JETP Lett. 98 (10), 598–602 (2013).

    Article  Google Scholar 

  75. M. V. Kurgansky, “Generation of helicity in a moist atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 29 (4), 464–469 (1993).

    Google Scholar 

  76. H. Ertel, “Ein neuer hydrodynamischer Wirbelsatz,” Meteorol. Z. 59, 277–281 (1942).

    Google Scholar 

  77. V. H. Leverson, P. C. Sinclair, and J. H. Golden, “Waterspout wind, temperature and pressure structure deduced from aircraft measurements,” Mon. Weather Rev. 105, 725–733 (1977).

    Article  Google Scholar 

  78. P. Névir and M. Sommer, “Energy–vorticity theory of ideal fluid mechanics,” J. Atmos. Sci. 66, 2073–2084 (2009).

    Article  Google Scholar 

  79. H. Pichler and A. Schaffhauser, “The synoptic meaning of helicity,” Meteorol. Atmos. Phys. 66 (1), 23–34 (1998).

    Article  Google Scholar 

  80. S. G. Chefranov, “On a scale-invariant criterion of similarity for rotating flows in laboratory modeling of tornado-like vortices,” Izv., Atmos Ocean. Phys. 39 (6), 685–689 (2003).

    Google Scholar 

  81. R. Hide, “Helicity, superhelicity and weighted relative potential vorticity: Useful diagnostic pseudoscalars?,” Q. J. R. Meteorol. Soc. 128 (583), 1759–1762 (2002).

    Article  Google Scholar 

  82. A. M. Yaglom, “Small-scale structure of turbulence in the atmosphere and ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 17 (12), 1235–1257 (1981).

    Google Scholar 

  83. R. Wu and W. Blumen, “An analysis of Ekman boundary layer dynamics incorporating the geostrophic momentum approximation,” J. Atmos. Sci. 39 (8), 1774–1782 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kurgansky.

Additional information

Original Russian Text © M.V. Kurgansky, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 2, pp. 147–163.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurgansky, M.V. Helicity in dynamic atmospheric processes. Izv. Atmos. Ocean. Phys. 53, 127–141 (2017). https://doi.org/10.1134/S0001433817020074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817020074

Keywords

Navigation