Skip to main content
Log in

Simulation of the spatiotemporal variability of the World Ocean sea surface hight by the INM climate models

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of simulations of the World Ocean sea surface hight (SSH) in by various versions of the Climate Model of the Institute of Numerical Mathematics, Russian Academy of Sciences, are compared with the CNES-CLS09 fields of the mean dynamic topography (deviation of the ocean level from the geoid). Three models with different ocean blocks are considered which slightly differ in numerical schemes and have various horizontal spatial resolution, i.e., the INMCM4 model, which participated in the Climate Model Intercomparison Project (CMIP Phase 5, resolution of 1° × 1/2°); the INMCM5 model, which participates in the next project, CMIP6 (resolution of 1/2° × 1/4°); and the advanced INMCM-ER eddy-resolving model (resolution of 1/6° × 1/8°). It is shown that an increase in the spatial resolution improves the reproduction of ocean currents (with Agulhas and Kuroshio currents as examples) and their variability. A probable cause of relatively high errors in the reproduction of the SSH of Southern and Indian oceans is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Bryan, “A numerical method for study of the circulation of the world ocean,” J. Comput. Phys. 4, 347–376 (1969).

    Article  Google Scholar 

  2. V. B. Zalesny, Modeling Large-Scale Motions in the World Ocean (Department of Numerical Mathematics, USSR Acad. Sci., Moscow, 1984) [in Russian].

    Google Scholar 

  3. R. C. Malone, R. D. Smith, and J. K. Dukowicz, “New numerical methods for ocean modeling on parallel computers,” Los Alamos Sci., No. 21, 210–214 (1993).

    Google Scholar 

  4. A. S. Sarkisyan, Numerical Analysis and Prediction of Sea Currents (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  5. F. W. Landerer, P. J. Gleckler, and T. Lee, “Evaluation of CMIP5 dynamic sea surface height multi-model simulations against satellite observations,” Clim. Dyn. 43, 1271–1283 (2014). doi 10.1007/s00382-013-1939-x

    Article  Google Scholar 

  6. M.-H. Rio and F. Hernandez, “A mean dynamical topography computed over the world ocean from altimetry, in-situ measurements and a geoid model,” J. Geophys. Res. 109, C12032 (2004). doi 10.1029/ 2003JC002226

    Article  Google Scholar 

  7. M.-H. Rio, P. Schaeffer, F. Hernandez, et al., “The estimation of the ocean mean dynamic topography through the combination of altimetric data, in-situ measurements and GRACE geoid: From global to regional studies,” in Proceedings of the GOCINA International Workshop (Luxembourg, 2005).

    Google Scholar 

  8. M.-H. Rio, P. Schaeffer, G. Moreaux, et al., “A new mean dynamic topography computed over the global ocean from GRACE data altimetry and in-situ measurements,” in OceanObs09 Symposium, 21–25 September, 2009 (Venice, 2009). http://wwwavisooceanobscom/ fr/donnees/produits/produits-auxiliaires/mdt/indexhtml.

    Google Scholar 

  9. N. Maximenko, P. Niiler, L. Centurioni, et al., “Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques,” J. Atmos. Ocean. Technol. 26 (9), 1175 (2009). doi 10.1175/2009JTECHO672.1

    Article  Google Scholar 

  10. N. A. Dyansky, V. Ya. Galin, A. V. Gusev, et al., “The model of the earth system developed at the INM RAS,” Russ. J. Mumer. Anal. Math. Modell. 25 (5), 419–429 (2010).

    Google Scholar 

  11. V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, et al., “Numerical simulation of large-scale ocean circulation based on the multicomponent splitting method,” Russ. J. Numer. Anal. Math. Modell. 25 (6), 581–609 (2010).

    Article  Google Scholar 

  12. E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations,” Izv., Atmos. Ocean. Phys. 46 (4), 414–431 (2010).

    Article  Google Scholar 

  13. E. M. Volodin, N. A. Diansky, and A. V. Gusev, “Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system,” Izv., Atmos. Ocean. Phys. 49 (4), 347–366 (2013).

    Article  Google Scholar 

  14. K. M. Terekhov, E. M. Volodin, and A. V. Gusev, “Methods and efficiency estimation of parallel implementation of the sigma-model of general ocean circulation,” Russ. J. Numer. Anal. Math. Modell. 26 (2), 189–208 (2011).

    Article  Google Scholar 

  15. A. J. S. Meijers, E. Shuckburgh, N. Bruneau, et al., “Representation of the Antarctic circumpolar current in the CMIP5 climate models and future changes under warming scenarios,” J. Geophys. Res. 117, C12008 (2012). doi 10.1029/2012JC008412

    Article  Google Scholar 

  16. T. Kuhlbrodt, R. Smith, Z. Wang, and J. Gregory, “The influence of eddy parameterizations on the transport of the Antarctic circumpolar current in coupled climate models,” Ocean Modell. 52–53, 1–8 (2012). doi 10.1016/jocemod.2012.04.006

    Article  Google Scholar 

  17. C. W. Boning, A. Dispert, M. Visbeck, et al., “The response of the Antarctic circumpolar current to recent climate change,” Nat. Geosci. 1 (12), 864 (2008). doi 10.1038/ngeo362

    Article  Google Scholar 

  18. P. R. Gent and J. C. McWilliams, “Isopycnal mixing in ocean circulation models,” J. Phys. Oceanogr. 20 (1), 150–155 (1990).

    Article  Google Scholar 

  19. N. G. Iakovlev, “On the simulation of temperature and salinity fields in the Arctic Ocean,” Izv., Atmos. Ocean. Phys. 48 (1), 86–101 (2012).

    Article  Google Scholar 

  20. M. Visbeck, J. Marshall, T. Haine, and M. Spall, “Specification of eddy transfer coeffcients in coarse resolution ocean circulation models,” J. Phys. Oceanogr. 27, 381–402 (1997).

    Article  Google Scholar 

  21. A. Beckmann and R. Doscher, “A method for improved representation of dense water spreading over topography in geopotential-coordinate models,” J. Phys. Oceanogr. 27 (4), 581–591 (1997).

    Article  Google Scholar 

  22. J.-M. Campin and H. Goosse, “Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate,” Tellus 51A, 412–430 (1999).

    Article  Google Scholar 

  23. R. Timmermann and A. Beckmann, “Parameterization of vertical mixing in the Weddell Sea,” Ocean Modell., No. 6, 83–100 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Iakovlev.

Additional information

Original Russian Text © N.G. Iakovlev, E.M. Volodin, A.S. Gritsun, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 4, pp. 428–438.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iakovlev, N.G., Volodin, E.M. & Gritsun, A.S. Simulation of the spatiotemporal variability of the World Ocean sea surface hight by the INM climate models. Izv. Atmos. Ocean. Phys. 52, 376–385 (2016). https://doi.org/10.1134/S0001433816040125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816040125

Keywords

Navigation