Skip to main content
Log in

Investigation of the antineutrino angular distribution in experiments on the β decay of polarized neutrons

  • Nuclei, Particles, and Their Interaction
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Since the emission of γ grays unavoidably accompanies β decay, the final state after the β decay of a neutron includes a photon along with a proton, an electron, and an antineutrino, i.e., four particles, rather than three. Therefore, when only the electron and proton momenta are detected and the γ-ray momentum is not detected in an experiment, the antineutrino momentum cannot be uniquely reconstructed, and only its mean value over a γ-ray momentum distribution determined from corresponding calculations can be considered. The γ grays are significant for finding the asymmetry parameter B of the antineutrino angular distribution from experiments on the β decay of polarized neutrons, where the electron momentum p directed along the x axis and the projection of the proton momentum P x onto the x axis are detected, and the neutron polarization vector ξ is parallel or antiparallel to x. Since the γ rays are not detected in such experiments, the antineutrino kinematics are not uniquely specified by the observables p and P x and can be reconstructed only on the average, so that the antineutrino momentum distribution averaged over a γ-ray momentum distribution is considered. Thus, the exact value of B cannot be obtained from these experiments, but the true value of B can be estimated on the average by considering the mean (most likely) value 〈B〉 and the dispersion (rms deviation) ΔB. The unavoidable uncertainty in the estimate of B amounts to several percent and is thus significant for present-day experiments, which are intended to obtain the value of B to a very high accuracy of ∼ (0.1–1)%. If electromagnetic interactions are taken into account, measurements of the electron and proton momentum distributions can also be used to obtain g A, i.e., the axial β-decay amplitude, to high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pichlmeier, P. Geltenbort, V. Nesvizhevsky et al., in Proceedings of ISINN-6, E3-98-202, JINR, Dubna, Russia, 15–18 May, 1998, p. 220; S. Arzumanov, L. Bondarenko, S. Chernyavski et al., in Proceedings of ISINN-5, E3-97-213, JINR, Dubna, Russia, 14–17 May, 1997, p. 53; K. Schreckenbach and W. Mampe, J. Phys. G 12, 1 (1992); W. Mampe, P. Ageron, J. C. Bates et al., Nucl. Instrum. Methods Phys. Res. A 284, 111, (1989); W. Mampe, L. N. Bondarenko, V. I. Morozov et al., JETP Lett. 57, 82 (1993); J. Byrne, P. G. Dawber, C. G. Habeck et al., Europhys. Lett. 33, 187 (1996).

  2. J. Reich, H. Abele, M. A. Hoffman et al., in Proceedings of ISINN-6, E3-98-209, JINR, Dubna, Russia, 15–18 May, 1998, p. 226; H. Abele, S. Bäßler D. Dubbers et al., Phys. Lett. B 407, 212 (1997); P. Liaud, K. Schreckenbach, R. Kossakowski et al., Nucl. Phys. A 612, 53 (1997); K. Schreckenbach, P. Liaud, R. Kossakowski et al., Phys. Lett. B 349, 427 (1995).

  3. I. A. Kuznetsov, A. P. Serebrov, I. V. Stepanenko et al., Phys. Rev. Lett. 75, 794 (1995); I. A. Kuznetsov, A. P. Serebrov, I. V. Stepanenko et al., JETP Lett. 60, 315 (1994); A. P. Serebrov, I. A. Kuznetsov, I. V. Stepanenko et al., Zh. Éksp. Teor. Fiz. 113, 1963 (1998) [JETP 86, 1074 (1998)].

    Article  ADS  Google Scholar 

  4. B. G. Erozolimskii, Usp. Fiz. Nauk 116, 145 (1975) [Sov. Phys. Usp. 18, 377 (1975)]; B. G. Erozolimskii, L. N. Bondarenko, Yu. A. Mostovoi et al., Yad. Fiz. 8, 176 (1968) [Sov. J. Nucl. Phys. 8, 98 (1969)]; Yad. Fiz. 12, 323 (1970) [Sov. J. Nucl. Phys. 12, 178 (1971)].

    Google Scholar 

  5. R. R. Levis and G. W. Ford, Phys. Rev. 107, 756 (1957); S. Barshay and R. Behrends, Phys. Rev. 114, 931 (1959); J. K. Knipp and G. E. Uhlenbeck, Physica (Amsterdam) 3, 425 (1936); F. Bloch, Phys. Rev. 50, 272 (1936); I. S. Batkin and Yu. G. Smirnov, Fiz. Élem. Chastits At. Yadra 11, 1421 (1980) [Sov. J. Part. Nucl. 11, 564 (1980)].

    ADS  Google Scholar 

  6. A. Sirlin, Nucl. Phys. B 71, 29 (1974); 100, 291 (1975); 196, 83 (1982); Rev. Mod. Phys. 50, 573 (1978); Phys. Rev. D 22, 971 (1980).

    Article  ADS  Google Scholar 

  7. F. Glück and K. Toth, Phys. Rev. D 46, 2090 (1992); A. Garcia and W. Juarez, Phys. Rev. D 22, 1132 (1980); A. Garcia, Phys. Rev. D 25, 1348 (1982); 35, 232 (1987); K. Toth, K. Szegö, and A. Margaritis, Phys. Rev. D 33, 3306 (1986); F. Glück and K. Toth, Phys. Rev. D 41, 2160 (1990); F. Glück, Phys. Rev. D 47, 2840 (1993).

    ADS  Google Scholar 

  8. G. G. Bunatian, in Proceedings of ISINN-5, E3-97-213, JINR, Dubna, Russia, 15–18 May, 1997, p. 102; G. G. Bunatyan, Yad. Fiz. 62, 697 (1999) [Phys. At. Nucl. 62, 1648 (1999)].

  9. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum Theory, Parts 1 and 2, Pergamon Press, Oxford (1971–1974).

    Google Scholar 

  10. E. D. Commins and P. H. Bucksbaum, Weak Interactions of Leptons and Quarks, Cambridge Univ. Press, Cambridge (1983); E. D. Commins, Weak Interactions, McGraw-Hill, New York (1973); P. H. Frampton and W. K. Tung, Phys. Rev. D 3, 1114 (1971).

    Google Scholar 

  11. C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York (1981).

    Google Scholar 

  12. Review of Particle Properties, Phys. Rev. D 50 1177 (1994).

  13. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 625 (1973).

    Article  ADS  Google Scholar 

  14. S. M. Bilen’kii, R. M. Ryndin, Ya. A. Smorodinskii, and Ho Tso-Hsiu, Zh. Éksp. Teor. Fiz. 37, 1758 (1959) [Sov. Phys. JETP 10, 1241 (1960)].

    Google Scholar 

  15. A. A. Abrikosov, Zh. Éksp. Teor. Fiz. 30, 96 (1956) [Sov. Phys. JETP 3, 71 (1956)]; B. B. Sudakov, Zh. Éksp. Teor. Fiz. 30, 87 (1956) [Sov. Phys. JETP 3, 65 (1956)]; D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 13, 379 (1961); N. Meister and D. R. Yennie, Phys. Rev. 130, 1210 (1963); F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

    MATH  MathSciNet  Google Scholar 

  16. Yu. A. Mostovoy, Yad. Fiz. 59, 1013 (1996) [Phys. At. Nucl. 59, 968 (1996)]; Yu. A. Mostovoy, Kurchatov Institute Preprint IAE-6040/2, Moscow (1997).

    Google Scholar 

  17. A. P. Serebrov and N. V. Romanenko, JETP Lett. 55, 503 (1992).

    ADS  Google Scholar 

  18. B. R. Hostein and S. B. Treiman, Phys. Rev. D 16, 2369 (1977); M. A. Beg, R. V. Budny, R. Mohapatra et al., Phys. Rev. Lett. 38, 1252 (1977).

    ADS  Google Scholar 

  19. R. N. Mohapatra and D. P. Sidhu, Phys. Rev. Lett. 38, 667 (1977); R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Statistical Physics, 1st ed., Pergamon Press, London; Addison-Wesley, Reading, MA (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 116, 1505–1522 (November 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunatyan, G.G. Investigation of the antineutrino angular distribution in experiments on the β decay of polarized neutrons. J. Exp. Theor. Phys. 89, 811–820 (1999). https://doi.org/10.1134/1.558919

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558919

Keywords

Navigation