Skip to main content
Log in

Inhomogeneous two-dimensional structures in liquid crystals

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Localized axisymmetric inhomogeneous states with a continuous distribution of the director field can exist in nematics. Such structures are compressed into dense filaments under the influence of a magnetic or electric field. It is hypothesized that the given states can be achieved in filamentary nematic textures. This model is an alternative to the conventional disclination model. Two types of lattices of axial structures can exist in the entire range of existence of the modulated state. Axial structures with a kernel of finite radius can exist in cylindrical capillaries. The structure and equilibrium dimensions of the axial states are easily altered over a wide range under the influence of an applied field. The feasibility of utilizing isolated axial structures and lattices of such structures in optical data processing and imaging devices is discussed. The most promising outlook in this regard is for modulated states and axial structures in chiral liquid crystals exhibiting spontaneous polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., Clarendon Press, Oxford (1993).

    Google Scholar 

  2. W. H. de Jen, Physical Properties of Liquid Crystalline Materials, Gordon and Breach, New York (1980).

    Google Scholar 

  3. Liquid Crystals, H. Stegemeyer (Ed.), Steinkopff Verlag, Darmstadt; Springer, New York (1994).

  4. I. E. Dzyaloshinskii, Zh. Éksp. Teor. Fiz. 58, 1443 (1970) [Sov. Phys. JETP 31, 773 (1970)].

    Google Scholar 

  5. M. J. Stephen and J. P. Straley, Rev. Mod. Phys. 46, 618 (1974).

    Article  ADS  Google Scholar 

  6. A. S. Pikin, Structural Transformations in Liquid Crystals [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  7. S. Chandrasekhar, Liquid Crystals, Cambridge Univ. Press, New York (1977).

    Google Scholar 

  8. Liquid Crystals (Applications and Uses), Vols. 1–3, (Ed.), B. Bahadur World Scientific, Singapore-River Edge, N.J.-London (1990).

    Google Scholar 

  9. P. E. Cladis and M. Kleman, J. Phys. (Paris), Colloq. 33, 591 (1972).

    Google Scholar 

  10. R. B. Meyer, Philos. Mag. 27, 403 (1973).

    Google Scholar 

  11. C. Williams, P. Pieranski, and P. E. Cladis, Phys. Rev. Lett. 29, 90 (1973).

    ADS  Google Scholar 

  12. S. I. Anisimov and I. E. Dzyaloshinskii, Zh. Éksp. Teor. Fiz. 61, 2140 (1971) [Sov. Phys. JETP 34, 1140 (1972)].

    Google Scholar 

  13. C. Rebbi and G. Soliani, Solitons and Particles, World Scientific, Singapore (1984).

    Google Scholar 

  14. F. Rondelez and J. P. Hulin, Solid State Commun. 10, 1009 (1972).

    Article  Google Scholar 

  15. H. Hervet, J. P. Hurault, and F. Rondelez, Phys. Rev. A 8, 3055 (1973).

    Article  ADS  Google Scholar 

  16. F. Rondelez and H. Arnould, C.R. Acad. Sci. Ser. B 273, 549 (1971).

    Google Scholar 

  17. G. Malet, J. Marignan, and O. Parodi, J. Phys. Lett. 36, 317 (1975).

    Google Scholar 

  18. J. Marignan, G. Malet, and O. Parodi, J. Phys. Lett. 37, 3365 (1975).

    Google Scholar 

  19. A. N. Bogdanov and A. A. Shestakova, Fiz. Nizk. Temp. 23, 1024 (1997) [Low Temp. Phys. 23, 769 (1997)].

    Google Scholar 

  20. A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).

    ADS  Google Scholar 

  21. P. G. De Gennes, Solid State Commun. 6, 163 (1968).

    Google Scholar 

  22. I. E. Dzyaloshinskii, Zh Éksp. Teor. Fiz. 46, 1420 (1964) [Sov. Phys. JETP 19, 960 (1964)].

    Google Scholar 

  23. E. Sackmann, S. Melboom, and L. C. Snyder, J. Am. Chem. Soc. 89, 5982 (1967); J. Wysocki, J. Adams, and W. Haas, Phys. Rev. Lett. 20, 1025 (1968).

    Article  Google Scholar 

  24. G. Durand, L. Leger, F. Rondelez, and M. Veyssle, Phys. Rev. Lett. 22, 227 (1969).

    ADS  Google Scholar 

  25. R. B. Meyer, Appl. Phys. Lett. 14, 208 (1969).

    Article  Google Scholar 

  26. F. J. Kahn, Phys. Rev. Lett. 24, 209 (1970).

    Article  ADS  Google Scholar 

  27. A. N. Bogdanov, M. V. Kudinov, and D. A. Yablonskii, Fiz. Tverd. Tela (Leningrad) 31(10), 99 (1989) [Sov. Phys. Solid State 31, 1707 (1989)].

    Google Scholar 

  28. A. N. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).

    Article  ADS  Google Scholar 

  29. A. N. Bogdanov and A. Hubert, Phys. Status Solidi B 186, 527 (1994).

    Google Scholar 

  30. A. Hubert, Theorie der Domanenwande in Geordneten Medien Springer-Verlag, Berlin (1974).

    Google Scholar 

  31. A. A. Abrikosov, Zh. Éksp. Teor. Fiz. 32, 1442 (1957) [Sov. Phys. JETP 5, 1174 (1957)].

    Google Scholar 

  32. P. G. De Gennes, Superconductivity of Metals and Alloys, Benjamin, New York (1966).

    Google Scholar 

  33. V. A. Belyakov and V. E. Dmitrienko, Usp. Fiz. Nauk 146, 369 (1985) [Sov. Phys. Usp. 28, 535 (1985)].

    Google Scholar 

  34. A. N. Bogdanov, JETP Lett. 62, 247 (1995).

    ADS  MathSciNet  Google Scholar 

  35. A. N. Bogdanov and D. A. Yablonskii, Zh. Éksp. Teor. Fiz. 95, 178 (1989) [Sov. Phys. JETP 68, 101 (1989)].

    Google Scholar 

  36. A. Bogdanov, in Sixth Joint MMM-Intermag Conference, Abstracts, Albuquerque (1994).

  37. J. M. Kosterlitz and D. J. Thouless, J. Phys. C Solid State Phys. 6, 1181 (1973).

    Article  ADS  Google Scholar 

  38. R. J. Donnelly, Quantized Vortices in Helium II, Cambridge Univ. Press, Cambridge-New York (1991).

    Google Scholar 

  39. M. V. Kulik and O. D. Lavrentovich, Zh. Éksp. Teor. Fiz. 85, 511 (1983) [Sov. Phys. JETP 58, 299 (1983)].

    Google Scholar 

  40. O. D. Lavrentovich and E. M. Terent’ev, Zh. Éksp. Teor. Fiz. 91, 2084 (1986) [Sov. Phys. JETP 64, 1237 (1986)].

    Google Scholar 

  41. G. E. Volovik and V. P. Mineev, Zh. Éksp. Teor. Fiz. 72, 2256 (1977) [Sov. Phys. JETP 45, 1186 (1977)].

    MathSciNet  Google Scholar 

  42. V. G. Makhan’kov, Yu. P. Rybakov, and V. I. Sanyuk, Usp. Fiz. Nauk 164/, 121 (1994).

    Google Scholar 

  43. M. Schadt and W. Helfrich, Appl. Phys. Lett. 18, 127 (1971).

    Article  Google Scholar 

  44. M. Schadt, in Liquid Crystal, H. Stegemeyer (Ed.), Steinkopff Verlag, Darmstadt; Springer, New York (1994).

    Google Scholar 

  45. F. Kahn, Appl. Phys. Lett. 22, 111 (1973).

    Google Scholar 

  46. W. Helfrich, Appl. Phys. Lett. 17, 531 (1970).

    Article  Google Scholar 

  47. J. P. Hurault, J. Chem. Phys. 59, 2068 (1973).

    Article  Google Scholar 

  48. L. M. Blinov and L. A. Beresnev, Usp. Fiz. Nauk 143, 391 (1984) [Sov. Phys. Usp. 27, 492 (1984)].

    Google Scholar 

  49. Yu. L. Raikher, S. V. Burylov, and A. N. Zakhlevnykh, Zh. Éksp. Teor. Fiz. 91, 542 (1986) [Sov. Phys. JETP 64, 319 (1986)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 113, 1675–1697 (May 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanov, A.N., Shestakov, A.A. Inhomogeneous two-dimensional structures in liquid crystals. J. Exp. Theor. Phys. 86, 911–923 (1998). https://doi.org/10.1134/1.558562

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558562

Keywords

Navigation