Skip to main content
Log in

Formation of spatial solitons and spatial shock waves in photorefractive crystals

  • Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An analytical model, which describes the drift and diffusion mechanisms for the formation of the nonlinear response (local and nonlocal nonlinearities) of photorefractive crystals on the microscopic level, is constructed. New types of stable self-consistent distributions of the light field intensity, i.e., spatial solitons, are found. The trajectories of their motion (self-bending) are calculated, and the possibility of observing a new nonlinear-optical effect in photorefractive crystals, viz., the formation of spatial shock waves, is demonstrated. The modulation instability appearing when plane waves propagate in photorefractive crystals is analyzed, and the characteristic spatial scales of the light field distribution formed as a result of self-interaction (fanning) are determined. The results of the analysis are confirmed by computer simulation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses, American Institute of Physics, New York (1992).

    Google Scholar 

  2. Photorefractive Materials and Applications (Topics in Applied Physics, Vol. 61), P. Gunter and J.-P. Huignard (eds.), Springer, Heidelberg (1988).

    Google Scholar 

  3. Photorefractive Materials and Applications (Topics in Applied Physics, Vol. 62), P. Gunter and J.-P. Huignard (eds.), Springer, Heidelberg (1988).

    Google Scholar 

  4. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Springer-Verlag, Berlin-New York (1991).

    Google Scholar 

  5. S. G. Odulov, M. S. Soskin, and A. I. Khizhnyak, Optical Oscillators with Four-Wave Mixing, Harwood Academic, Chur, 1991.

    Google Scholar 

  6. M. Cronin-Colomb, B. Fisher, J. O. White, and A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).

    ADS  Google Scholar 

  7. D. Engin, S. Orlov, M. Segev et al., Phys. Rev. Lett. 74, 1743 (1995).

    Article  ADS  Google Scholar 

  8. N. Kukhtarev, V. Markov, S. Odulov et al., Ferroelectrics 22, 949 (1979).

    Google Scholar 

  9. J. Feinberg, Opt. Lett. 7, 486 (1982).

    ADS  Google Scholar 

  10. A. A. Zozulya, Kvantovaya Elektron. 19, 733 (1992) [Sov. J. Quantum Electron. 22, 677 (1992)]

    Google Scholar 

  11. V. A. Vysloukh, V. Kutuzov, and V. V. Shuvalov, Kvantovaya Elektron. 23, 157 (1996).

    Google Scholar 

  12. A. V. Mamaev and A. A. Zozulya, Opt. Commun. 79, 373 (1990).

    Article  ADS  Google Scholar 

  13. N. I. Bel’dyugina and V. V. Shkunov, Kvantovaya Elektron. 21, 234 (1994).

    Google Scholar 

  14. M. A. Vorontzov, ICONO’95 Tech. Digest (St. Petersburg, Russia) 1, 345 (1995).

    Google Scholar 

  15. M. Segev, B. Crosignani, and A. Yariv, Phys. Rev. Lett. 68, 923 (1992).

    Article  ADS  Google Scholar 

  16. M. D. Iturbe Castillo, P. A. Marquez Aguilar, J. J. Sanchez Mondragon, et al., Appl. Phys. Lett. 64, 408 (1994).

    ADS  Google Scholar 

  17. G. Duree, J. Shultz, G. Salamo et al., Phys. Rev. Lett. 71, 533 (1994).

    ADS  Google Scholar 

  18. G. C. Valley, M. Segev, B. Crosignani et al., Phys. Rev. A 50, R4457 (1994).

    Article  ADS  Google Scholar 

  19. D. N. Christodoulides and M. I. Carvalho, J. Opt. Soc. Am. B 12, 1628 (1995).

    ADS  Google Scholar 

  20. M. Segev, G. C. Valley, S. R. Singh et al., Opt. Lett. 20, 1764 (1995).

    ADS  Google Scholar 

  21. G. Duree, M. Morin, G. Salamo et al., Phys. Rev. Lett. 74, 1978 (1995).

    Article  ADS  Google Scholar 

  22. G. Duree, G. Salamo, M. Segev et al., Opt. Lett. 19, 1195 (1994).

    ADS  Google Scholar 

  23. V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).

    ADS  Google Scholar 

  24. D. Iturbe Castillo, M. Torres Cisneros, J. J. Sanchez Mondragon et al., Opt. Lett. 20, 1 (1995).

    Google Scholar 

  25. J. Feinberg, J. Opt. Soc. Am. 72, 46 (1982).

    ADS  Google Scholar 

  26. D. N. Christodoulides and M. I. Carvalho, Opt. Lett. 19, 1714 (1994).

    ADS  Google Scholar 

  27. A. A. Zozulya, M. Saffman, and D. Z. Anderson, Phys. Rev. Lett. 73, 818 (1994).

    Article  ADS  Google Scholar 

  28. O. V. Lyubomudrov and V. V. Shkunov, Kvantovaya Elektron. 21, 561 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 705–716 (February 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vysloukh, V.A., Kutuzov, V., Petnikova, V.M. et al. Formation of spatial solitons and spatial shock waves in photorefractive crystals. J. Exp. Theor. Phys. 84, 388–394 (1997). https://doi.org/10.1134/1.558128

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558128

Keywords

Navigation