Skip to main content
Log in

Temperature dependence of the permittivity of PbWO4 crystals in the range 290–550 K

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependence of the permittivity ε of PbWO4 crystals is studied in the range T = 290–550 K at a frequency of 1 kHz. The ε(T) dependences measured on heating and cooling are different. On heating, groups of narrow maxima at 290–330 K and 330–400 K are observed in the ε(T) curves. The first group of peaks is dominant. High-temperature polarization produces an additional broad peak in the ε (T) curve at 400 K. A linear ε(T) dependence is observed in the range 400–470 K. Above 470 K, the variation in ε(T) closely follows an exponential law. Restoring relaxation of ε in the range 25–30 at 290 K after high-temperature sample heating proceeds exponentially in a few stages. The features of ε(T) curves are determined by the dipole polarization and the hopping mechanism of charge exchange between complex dipole associates. Such structural defects may be pairs of doubly charged lead and oxygen vacancies (diplons). These defects also form a basis for more complicated defect complexes with localized holes (or electrons) at the corresponding vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Nikl, Phys. Status Solidi A 178(2), 595 (2000).

    ADS  Google Scholar 

  2. V. N. Shevchuk and I. V. Kayun, Fiz. Tverd. Tela (St. Petersburg) 45(10), 1807 (2003) [Phys. Solid State 45, 1898 (2003)].

    Google Scholar 

  3. V. N. Shevchuk and I. V. Kayun, Funct. Mater. 10(2), 229 (2003).

    Google Scholar 

  4. V. N. Shevchuk and I. V. Kayun, Visn. L’viv. Derzh. Univ., Ser. Fiz. 35, 60 (2002).

    Google Scholar 

  5. J. A. Groenink and H. Binsma, J. Solid State Chem. 29(2), 227 (1979).

    Article  ADS  Google Scholar 

  6. B. Han, X. Feng, G. Hu, P. Wang, and Z. Yin, J. Appl. Phys. 84(5), 2831 (1998).

    Article  ADS  Google Scholar 

  7. H. Huang, W. Li, X. Feng, and P. Wang, Phys. Status Solidi A 187(2), 563 (2001).

    ADS  Google Scholar 

  8. W.-S. Li, T.-B. Tang, H.-W. Huang, and X.-Q. Feng, Jpn. J. Appl. Phys., Part 1 40(12), 6893 (2001).

    Google Scholar 

  9. H.-W. Huang, Z.-G. Ye, M. Dong, W.-L. Zhu, and X.-Q. Feng, Jpn. J. Appl. Phys., Part 2 41(6B), L713 (2002).

    Google Scholar 

  10. H.-W. Huang, X. Feng, T.-B. Tang, M. Dong, and Z.-G. Ye, Phys. Status Solidi A 196(2), R7 (2003).

    ADS  Google Scholar 

  11. W. Li, T.-B. Tang, and X. Feng, J. Appl. Phys. 87(11), 7692 (2000).

    ADS  Google Scholar 

  12. S. K. Arora and T. Mathew, Phys. Status Solidi A 116(1), 405 (1989).

    Google Scholar 

  13. O. V. Ivanov, A. P. Nakhodnova, and V. N. Krivobok, Zh. Neorg. Khim. 27(3), 587 (1982).

    Google Scholar 

  14. A. A. Potapov, Dielectric Method for Studying Substances (Irkut. Gos. Univ., Irkutsk, 1990) [in Russian].

    Google Scholar 

  15. A. E. Nosenko and V. N. Shevchuk, Fiz. Tverd. Tela (St. Petersburg) 39(5), 871 (1997) [Phys. Solid State 39, 775 (1997)].

    Google Scholar 

  16. M. V. Mokhosoev and Zh. G. Bazarova, Complex Oxides of Molybdenum and Tungsten with Elements of Groups I–IV (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  17. Y. R. Reddy and L. Sirdeshmukh, Phys. Status Solidi A 103(2), K157 (1987).

    Google Scholar 

  18. J. Bourgoin and M. Lannoo, Point Defects in Semiconductors, Vol. 2: Experimental Aspects (Springer, New York, 1983; Mir, Moscow, 1985).

  19. A. B. Lidiard, Ionic Conductivity (Springer, Berlin, 1957; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  20. E. A. Ukshe and N. G. Bukun, Solid Electrolytes (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  21. M. Nikl, K. Nitsch, S. Baccaro, A. Cecilia, M. Montecchi, B. Borgia, Dafinei, I. M. Diemoz, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Kobayashi, M. Ishii, Y. Usuki, O. Yarolimek, and P. Reiche, J. Appl. Phys. 82(11), 5758 (1997).

    Article  ADS  Google Scholar 

  22. Q. Zhang, T. Liu, J. Chen, and X. Feng, Phys. Rev. B 68, 064101 (2003).

  23. V. V. Laguta, M. Martini, A. Vedda, E. Rosetta, M. Nikl, E. Mihokova, J. Rosa, and Y. Usuki, Phys. Rev. B 67, 205102 (2003).

    Google Scholar 

  24. Y. B. Abraham, A. W. Holzwarth, R. T. Williams, G. E. Matthews, and A. R. Tackett, Phys. Rev. B 64, 245109 (2001).

    Google Scholar 

  25. A. K. Jonscher, Universal Relaxation Law. Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1996).

    Google Scholar 

  26. T. V. Panchenko, L. M. Karpova, and V. M. Duda, Fiz. Tverd. Tela (St. Petersburg) 42(4), 671 (2000) [Phys. Solid State 42, 689 (2000)].

    Google Scholar 

  27. P. V. Zhukovskii, Ya. Partyka, P. Vengerék, Yu. Shostak, Yu. Sidorenko, and A. Rodzik, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34(10), 1174 (2000) [Semiconductors 34, 1124 (2000)].

    Google Scholar 

  28. L. E. Soshnikov, V. M. Trukhan, and S. F. Marenkin, Neorg. Mater. 39(4), 395 (2003).

    Google Scholar 

  29. A. E. Nosenko and V. N. Shevchuk, Radiat. Eff. Defects Solids 134(1–4), 251 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 47, No. 4, 2005, pp. 608–613.

Original Russian Text Copyright © 2005 by Shevchuk, Kayun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchuk, V.N., Kayun, I.V. Temperature dependence of the permittivity of PbWO4 crystals in the range 290–550 K. Phys. Solid State 47, 632–637 (2005). https://doi.org/10.1134/1.1913972

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1913972

Keywords

Navigation