Skip to main content
Log in

Photometric parameters of the dwarf nova SS Cygni in the quiescent state

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The mean 1983–1996 UBV light curves of the dwarf nova SS Cyg are used to derive the binary parameters in the quiescent state. Solutions are obtained for a classical hot-spot model and a model with an energy source lying outside the accretion disk. Photometric and spectroscopic data are combined to infer the masses and radii of the binary components. The white dwarf in SS Cyg is one and a half times as massive as the red dwarf, q=M wd /M rd ∼1.45, M rd ∼0.46M and M wd ∼0.66M . The orbital inclination of the system is i⋍51°–54°. The contribution of the accretion disk to the total flux in the quiescent state is estimated to be ∼47–49% and ∼54% in the VU and B filters, respectively. The hot spot contributes less than ∼3% to the total optical flux. In the “non-classical” hot-spot model, the disk and bulge contributions are 27 and 2–8%, respectively, depending on the orbital phase. The shape of the mean light curves of SS Cyg suggests asymmetric heating of the red-dwarf surface in the quiescent state by high-temperature radiation generated in the hot-spot region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Khruzina, Astron. Zh. 75, 209 (1998).

    Google Scholar 

  2. S. Shore, M. Livio, and E. P. J. Van den Heuvel, Interacting Binaries (Springer, Berlin-Budapest, 1994).

    Google Scholar 

  3. M. Hack, Cataclysmic Variables and Related Objects. P. 1 (U.S. Gov., Washington, 1993).

    Google Scholar 

  4. J. Smak, Acta Astron. 20, 312 (1970).

    ADS  Google Scholar 

  5. A. N. Matvienko, A. M. Cherepashchuk, and A. G. Yagola, Astron. Zh. 65, 1006 (1988).

    ADS  Google Scholar 

  6. K. Horne, Mon. Not. R. Astron. Soc. 213, 129 (1985).

    ADS  Google Scholar 

  7. K. Horne and M. C. Cook, Mon. Not. R. Astron. Soc. 214, 307 (1985).

    ADS  Google Scholar 

  8. K. Horne and T. R. March, Mon. Not. R. Astron. Soc. 218, 761 (1986).

    ADS  Google Scholar 

  9. D. V. Bisikalo, A. A. Boyarchuk, O. A. Kuznetsov, et al., Astron. Zh. 74, 880 (1997).

    Google Scholar 

  10. D. V. Bisikalo, A. A. Boyarchuk, O. A. Kuznetsov, et al., Astron. Zh. 74, 889 (1997).

    Google Scholar 

  11. D. V. Bisikalo, A. A. Boyarchuk, O. A. Kuznetsov, et al., Astron. Zh. 75, 40 (1998).

    Google Scholar 

  12. G. T. Bath and J. E. Pringle, Mon. Not. R. Astron. Soc. 194, 967 (1981).

    ADS  MATH  Google Scholar 

  13. Y. Osaki, Publ. Astron. Soc. Jpn. 26, 429 (1974).

    ADS  Google Scholar 

  14. F. Meyer and E. Meyer-Hofmeister, Astron. Astrophys. 104, 10 (1981).

    ADS  Google Scholar 

  15. J. K. Cannizzo, P. Ghosh, and J. C. Wheeler, Astrophys. J. Lett. 260, L83 (1982).

    Article  ADS  Google Scholar 

  16. R. Hoshi, Publ. Astron. Soc. Jpn. 36, 785 (1984).

    ADS  Google Scholar 

  17. P. Szkody, Astrophys. J. Lett. 192, L75 (1974).

    Article  ADS  Google Scholar 

  18. R. J. Stover, White Dwarfs and Variable Degenerate Stars (Univ. of Rochester, Rochester, 1979), p. 489.

    Google Scholar 

  19. M. F. Walker, Astrophys. J. Lett. 248, 256 (1981).

    Article  ADS  Google Scholar 

  20. P. Szkody, Astrophys. J. 207, 824 (1976).

    ADS  Google Scholar 

  21. P. Szkody, Astrophys. J. 217, 140 (1977).

    Article  ADS  Google Scholar 

  22. A. V. Holm and J. C. Gallagher, Astrophys. J. 192, 425 (1974).

    Article  ADS  Google Scholar 

  23. S. Rappaport, W. Cash, R. Doxsey, et al., Astrophys. J. 187, 5 (1974).

    Article  ADS  Google Scholar 

  24. I. D. Howarth, J. Brit. Astron. Assoc. 88, 458 (1978).

    ADS  Google Scholar 

  25. G. T. Bath and J. van Paradijs, Nature 305, 33 (1983).

    Article  ADS  Google Scholar 

  26. J. K. Cannizzo and J. A. Mattei, Astrophys. J. 401, 642 (1992).

    Article  ADS  Google Scholar 

  27. J. K. Cannizzo, Astrophys. J. 419, 318 (1993).

    Article  ADS  Google Scholar 

  28. A. H. Joy, Astrophys. J. 124, 317 (1956).

    Article  ADS  Google Scholar 

  29. J. Echevarría, F. Diego, M. Tapia, et al., Mon. Not. R. Astron. Soc. 240, 975 (1989).

    ADS  Google Scholar 

  30. F. V. Hessman, E. L. Robinson, R. E. Nather, et al., Astrophys. J. 286, 747 (1984).

    Article  ADS  Google Scholar 

  31. G. Grant, Astrophys. J. 122, 566 (1955).

    Article  ADS  Google Scholar 

  32. M. C. Zuckerman, Ann. Astrophys. 24, 431 (1961).

    ADS  Google Scholar 

  33. W. B. Honey, G. T. Bath, P. A. Charles, et al., Mon. Not. R. Astron. Soc. 236, 727 (1989).

    ADS  Google Scholar 

  34. I. B. Voloshina, Pis'ma Astron. Zh. 12, 219 (1986).

    ADS  Google Scholar 

  35. I. B. Voloshina and V. M. Lyutyi, Astron. Zh. 70, 61 (1993).

    ADS  Google Scholar 

  36. A. Bruch, Acta Astron. 40, 369 (1990).

    ADS  Google Scholar 

  37. G. Grant and H. A. Abt, Astrophys. J. 129, 320 (1959).

    ADS  Google Scholar 

  38. T. S. Khruzina, Astron. Zh. 68, 1211 (1991).

    ADS  Google Scholar 

  39. A. V. Goncharskii, A. M. Cherepashchuk, and A. G. Yagola, Ill-posed Problems of Astrophysics [in Russian] (Nauka, Moscow, 1985), p. 162.

    Google Scholar 

  40. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  41. G. Djurasevic, Astrophys. Space Sci. 240, 317 (1996).

    Article  ADS  Google Scholar 

  42. D. M. Himmelblau, Applied Nonlinear Programming (McGraw-Hill, New York, 1972; Mir, Moscow, 1975), p. 163.

    MATH  Google Scholar 

  43. P. Charbonneau, Astrophys. J., Suppl. Ser. 101, 309 (1995).

    Article  ADS  Google Scholar 

  44. S. Davey and R. C. Smith, Mon. Not. R. Astron. Soc. 257, 476 (1992).

    ADS  Google Scholar 

  45. G. M. H. J. Habets and J. R. W. Heintze, Astron. Astrophys., Suppl. Ser. 46, 193 (1981).

    ADS  Google Scholar 

  46. A. P. Coroley, D. Crampton, and J. B. Hutchings, Astrophys. J. 241, 269 (1980).

    ADS  Google Scholar 

  47. T. Hamada and E. E. Salpeter, Astrophys. J. 134, 683 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  48. F. Giovannelli and I. G. Martínez-Pais, Space Sci. Rev. 56, 313 (1991).

    Article  ADS  Google Scholar 

  49. A. L. Kiplinger, Astron. J. 84, 655 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 77, No. 2, 2000, pp. 109–123.

Original Russian Text Copyright © 2000 by Voloshina, Khruzina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voloshina, I.B., Khruzina, T.S. Photometric parameters of the dwarf nova SS Cygni in the quiescent state. Astron. Rep. 44, 89–102 (2000). https://doi.org/10.1134/1.163831

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.163831

Keywords

Navigation