Skip to main content
Log in

Method of transfer relations in the theory of multiple resonant scattering of waves as applied to diffraction gratings and photonic crystals

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An approach is proposed in the theory of multiple scattering of wave fields in two-dimensional inhomogeneous media, which provides a universal description for wave scattering from one-dimensional periodic interfaces between two dielectric media (optical gratings) and from two-dimensional periodic dielectric structures (photonic crystals). The approach is based on the transfer matrix methodology, which involves sub-dividing the scattering medium into elementary layers with gaps; however, in contrast to the transfer matrix method, it leads to invariant imbedding equations for the matrix coefficients of reflection and transmission of an inhomogeneous medium. The developed approach is applied in a quantitative analysis of two optical effects: resonant decrease in the light reflection coefficient from the grating, associated with the profile depth effect, and exponential-power decay of optical radiation in the forbidden band of a 2D photonic crystal upon an increase in the number of its layers starting from one layer. The frequency spectrum for the electromagnetic radiation power transmission through a 2D photonic crystal formed by parallel layers of infinitely long cylinders is interpreted taking into account the spectral dependence of the total cross section of scattering from a single cylinder. Such an interpretation of the frequency spectrum with two forbidden gaps combined with the analysis of layer-by-layer dynamics of its formation makes it possible to reveal the role of microscopic resonant scattering of waves from a single cylinder and of macroscopic Bragg-type resonant scattering from a periodic system of cylinders during the formation of the spectrum of radiation transmission through a photonic crystal. A physical explanation is given for the transparency peaks in one of the forbidden gaps in the spectra of radiation transmission through a perfectly ordered system of cylinders in terms of multipole resonances of scattering from a single cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (MacMillan, New York, 1963).

    Google Scholar 

  2. F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces (Nauka, Moscow, 1972; Pergamon, New York, 1978).

    Google Scholar 

  3. V. I. Tatarskii, Waves Random Media 3, 127 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. L. Tsang, I. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley-Interscience, New York, 1985).

    Google Scholar 

  5. A. G. Voronovich, Wave Scattering from Rough Surfaces (Springer, Berlin, 1994).

    Google Scholar 

  6. M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964; Mir, Moscow, 1967).

    Google Scholar 

  7. R. Bellman and G. M. Wing, An Introduction to Invariant Imbedding (Wiley-Interscience, New York, 1975).

    Google Scholar 

  8. V. I. Klyatskin, The Embedding Method in the Theory of Wave Propagation (Nauka, Moscow, 1986).

    Google Scholar 

  9. C. Barnes and J. B. Pendry, Proc. R. Soc. London, Ser. A 435, 185 (1991).

    ADS  MathSciNet  Google Scholar 

  10. R. W. Wood, Proc. Phys. Soc. London 18, 396 (1902); Philos. Mag. 4, 396 (1902).

    Google Scholar 

  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

    Google Scholar 

  12. D. Maystre and R. Petit, Opt. Commun. 17, 196 (1976).

    Article  ADS  Google Scholar 

  13. E. Burstein, C. Y. Chen, and S. Lundqvist, Light Scattering in Solids, Ed. by J. L. Birman, H. Z. Cummis, and K. K. Rebane (Plenum, New York, 1979), p. 479.

    Google Scholar 

  14. I. Ursu, I. N. Mihailescu, Al. Popa, et al., Appl. Phys. Lett. 45, 365 (1984).

    Article  ADS  Google Scholar 

  15. J. A. Sanchez-Gil, A. A. Maradudin, Jun Q. Lu, et al., Phys. Rev. B 50, 15353 (1994).

  16. D. Maystre, Progress in Optics, Ed. by E. Wolf (North-Holland, Amsterdam, 1984), Vol. 21, p. 1.

    Google Scholar 

  17. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendez, Ann. Phys. (N.Y.) 203, 255 (1990).

    Article  Google Scholar 

  18. A. Hessel and A. A. Oliver, Appl. Opt. 4, 1275 (1965).

    ADS  Google Scholar 

  19. G. M. Gandel’man and P. S. Kondatenko, Pis’ma Zh. Éksp. Teor. Fiz. 38, 246 (1983) [JETP Lett. 38, 291 (1983)].

    Google Scholar 

  20. K.-T. Lee and T. F. George, Phys. Rev. B 31, 5106 (1985).

    ADS  Google Scholar 

  21. S. A. Akhmanov, V. N. Seminogov, and V. I. Sokolov, Zh. Éksp. Teor. Fiz. 93, 1654 (1987) [Sov. Phys. JETP 66, 945 (1987)].

    ADS  Google Scholar 

  22. F. Toigo, A. Marvin, C. Celli, and N. R. Hill, Phys. Rev. B 15, 5618 (1977).

    Article  ADS  Google Scholar 

  23. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John, Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  24. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).

    ADS  Google Scholar 

  25. M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).

    Article  ADS  Google Scholar 

  26. K. Sakoda, Phys. Rev. B 51, 4672 (1995).

    Article  ADS  Google Scholar 

  27. N. Stefanou, V. Karathanos, and A. Modinos, J. Phys.: Condens. Matter 4, 7389 (1992).

    Article  ADS  Google Scholar 

  28. K. Ohtaka and Y. Tanabe, J. Phys. Soc. Jpn. 65, 2265 (1996); J. Phys. Soc. Jpn. 65, 2276 (1996).

    Google Scholar 

  29. S. Y. Tong, Prog. Surf. Sci. 7, 1 (1975).

    Article  Google Scholar 

  30. J. B. Pendry and A. Mackinnon, Phys. Rev. Lett. 69, 2772 (1992).

    Article  ADS  Google Scholar 

  31. M. Sigalas, C. M. Soukoulis, E. M. Economou, et al., Phys. Rev. B 48, 14121 (1993).

    Google Scholar 

  32. Y. Zhao, I. A. Avrutsky, and B. Li, Appl. Phys. Lett. 75, 3596 (1999).

    ADS  Google Scholar 

  33. Yu. N. Barabanenkov, V. L. Kouznetsov, and M. Yu. Barabanenkov, Progress in Electromagnetic Research, PIER, Ed. by J. A. Kong (EMW, Cambridge, 1999), Vol. 24, p. 39; J. Electromagn. Waves Appl. 13, 1335 (1999).

    Google Scholar 

  34. R. W. Wood, Philos. Mag. 23, 315 (1912); Phys. Rev. 48, 934 (1935).

    Google Scholar 

  35. C. H. Palmer, J. Opt. Soc. Am. 42, 269 (1952).

    Google Scholar 

  36. D. Sornette, J. Stat. Phys. 56, 669 (1989).

    Article  MathSciNet  Google Scholar 

  37. E. Centeno, B. Guizal, and D. Felbacq, J. Opt. A: Pure Appl. Opt. 1, L10 (1999).

    Article  ADS  Google Scholar 

  38. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. B 61, 13458 (2000).

    Google Scholar 

  39. C. A. Condat and T. R. Kirkpatrick, Scattering and Localization of Classical Waves in Random Media, Ed. by Ping Sheng (World Sci., Singapore, 1990), Vol. 8, p. 423.

    Google Scholar 

  40. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 81, 1405 (1998).

    Article  ADS  Google Scholar 

  41. M. Bayindir, E. Cubukcu, I. Bulu, et al., Phys. Rev. B 64, 195113 (2001).

  42. Y.-Y. Chen and Z. Ye, Phys. Rev. E 65, 056612 (2002).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 4, 2003, pp. 763–774.

Original Russian Text Copyright © 2003 by Yu. Barabanenkov, M. Barabanenkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabanenkov, Y.N., Barabanenkov, M.Y. Method of transfer relations in the theory of multiple resonant scattering of waves as applied to diffraction gratings and photonic crystals. J. Exp. Theor. Phys. 96, 674–683 (2003). https://doi.org/10.1134/1.1574541

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1574541

Keywords

Navigation