Skip to main content
Log in

“Magnetodipole” self-organization of charge carriers in high-T c superconductors and the kinetics of phase transition

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A phenomenological model describing “magnetodipole” self-organization of charge carriers (the formation of so-called stripe-structures and the energy gap in the spectrum of states) was suggested to interpret the data of nonstationary nonlinear spectroscopy of high-T c superconductors. It was shown that, after rapidly heating a superconducting sample, the kinetics of the succeeding phase transition depended on initial temperature T. At small “overheatings” T*<T<T m x≈(1.4−1.5)T* (T c and T*≈T c are the temperatures of the transition to the superconducting state and the formation of stripe-structures) and the optimal level of doping, the decay of stripe-structures (and of the gap in the spectrum of states) occurred at a low rate (in times above to 10−9 s) in spite of the virtually instantaneous disappearance of superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. G. Bendnorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

    Google Scholar 

  2. A. Fujimori, E. Takayama-Muromachi, and Y. Uchida, Solid State Commun. 63, 857 (1987).

    Article  Google Scholar 

  3. J. Fink, N. Nucker, E. Pellegrin, et al., J. Electron Spectrosc. Relat. Phenom. 66, 395 (1994).

    Article  Google Scholar 

  4. Z. Schlesinger, L. D. Rotter, R. T. Collins, et al., Physica C (Amsterdam) 185–189(1), 57 (1991).

    Google Scholar 

  5. R. J. Birgeneau and G. Shirane, in Physical Properties of High Temperature Superconductors I, Ed. by D. M. Ginsberg (World Scientific, Singapore, 1989), p. 151.

    Google Scholar 

  6. J. Rossat-Mignod, L. P. Regnault, C. Vettier, et al., Physica C (Amsterdam) 185–189(1), 86 (1991); J. M. Tranquada, P. M. Gehring, G. Shirane, et al., Phys. Rev. B 46, 5561 (1992).

    Google Scholar 

  7. G. Shirane, Physica C (Amsterdam) 185–189(1), 80 (1991).

    Google Scholar 

  8. M. A. Kastner, R. J. Birgeneau, T. R. Thurston, et al., Phys. Rev. B 38, 6636 (1988).

    Article  ADS  Google Scholar 

  9. Problems in High-Temperature Superconductivity, Ed. by V. L. Ginzburg and D. A. Kirzhnits (Nauka, Moscow, 1977).

    Google Scholar 

  10. J. F. Annett, N. Goldenfeld, and A. J. Leggett, J. Low Temp. Phys. 105, 473 (1996).

    Article  Google Scholar 

  11. A. Moreo, A. Nazarenko, S. Haas, et al., J. Phys. Chem. Solids 56, 1645 (1995).

    Google Scholar 

  12. M. R. Norman, H. Ding, M. Randeria, et al., Nature 392, 157 (1998).

    Google Scholar 

  13. V. V. Kabanov, J. Demsar, B. Podobnik, et al., Phys. Rev. B 59, 1497 (1999).

    Article  ADS  Google Scholar 

  14. J. M. Tranquada, B. J. Sternlieb, J. D. Axe, et al., Nature 375, 561 (1995).

    Article  ADS  Google Scholar 

  15. B. Buchner, M. Breuer, A. Freimuth, et al., Phys. Rev. Lett. 73, 1841 (1994).

    ADS  Google Scholar 

  16. J. L. Cohn and J. Karpinski, Phys. Rev. B 58, 14 617 (1988).

  17. G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun. 63, 973 (1987).

    Article  Google Scholar 

  18. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).

    Article  ADS  Google Scholar 

  19. W. O. Putikka, M. U. Luchini, and T. M. Rice, Phys. Rev. Lett. 68, 538 (1992).

    Article  ADS  Google Scholar 

  20. M. S. Hybertsen, E. B. Stechel, M. Schluter, et al., Phys. Rev. B 41, 11 068 (1990).

  21. K. Yonemitsu, A. R. Bishop, and J. Lorenzana, Phys. Rev. B 47, 12 059 (1993).

    Google Scholar 

  22. Monte Carlo Methods in Statistical Physics, Ed. by K. Binder (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  23. A. N. Zherikhin, V. A. Lobastov, V. M. Petnikova, and V. V. Shuvalov, Phys. Lett. A 179, 145 (1993); Physica C (Amsterdam) 221, 311 (1994).

    Article  ADS  Google Scholar 

  24. Nonequilibrium Superconductivity, Ed. by D. N. Langenberg and A. I. Larkin (North-Holland, Amsterdam, 1986).

    Google Scholar 

  25. N. Bluzer, Phys. Rev. B 44, 10 222 (1991).

    Google Scholar 

  26. B. P. Stojkovic, Z. G. Yu, A. L. Chernyshev, et al., cond-mat/9911380.

  27. D. M. Frenkel and W. Hanke, Phys. Rev. B 42, 6711 (1990).

    Article  ADS  Google Scholar 

  28. B. I. Shraiman and E. D. Siggia, Phys. Rev. B 40, 9162 (1989).

    Article  ADS  Google Scholar 

  29. D. I. Khomskii and K. I. Kugel, cond-mat/0103317.

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon, Oxford, 1980; Nauka, Moscow, 1995).

    Google Scholar 

  31. A. Animalu, Quantum Theory of Crystalline Solids (Prentice Hall, Englewood Cliffs, 1977; Mir, Moscow, 1981).

    Google Scholar 

  32. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961; Nauka, Moscow, 1970).

    Google Scholar 

  33. J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).

    Google Scholar 

  34. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  35. N. N. Rozanov, Optical Bistability and Hysteresis in Distributed Nonlinear Systems (Nauka, Moscow, 1997).

    Google Scholar 

  36. V. A. Vasil’ev, Yu. M. Romanovskii, and V. G. Yakhno, Autowave Processes (Nauka, Moscow, 1987).

    Google Scholar 

  37. M. E. Gershenzon, V. V. Golovlev, I. B. Kedich, et al., Pis’ma Zh. Éksp. Teor. Fiz. 52, 1189 (1990) [JETP Lett. 52, 602 (1990)]; S. V. Chekalin, V. M. Farztdinov, V. V. Golovlyov, et al., Phys. Rev. Lett. 67, 3860 (1991).

    ADS  Google Scholar 

  38. A. S. Kazeroonian, T. K. Cheng, S. D. Brorson, et al., Solid State Commun. 78, 95 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 120, No. 5, 2001, pp. 1256–1267.

Original Russian Text Copyright © 2001 by Voronov, Petnikova, Shuvalov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronov, A.V., Petnikova, V.M. & Shuvalov, V.V. “Magnetodipole” self-organization of charge carriers in high-T c superconductors and the kinetics of phase transition. J. Exp. Theor. Phys. 93, 1091–1100 (2001). https://doi.org/10.1134/1.1427180

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1427180

Keywords

Navigation