Skip to main content
Log in

Plasma parameters in the channel of a long leader in air

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The time evolution of the electric field in the leader channel and other characteristics of the leader plasma in long air gaps are simulated. Calculations are performed in the one-dimensional time-dependent model with allowance for the time-varying energy deposition in the channel, the channel expansion, and the nonequilibrium ionization kinetics in the leader plasma. The calculations show that, at a gas temperature of 4500–6000 K, associative ionization becomes a dominant ionization mechanism in the leader channel; as a result, the electric field decreases to 100–200 V/cm in 10−4–10−3 s under the conditions typical of the leader discharge. The calculated electric field agrees well with the data from the experimental modeling of long leaders by a spark discharge in short gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Meek and J. D. Craggs, Electrical Breakdown in Gases (Wiley, New York, 1987).

    Google Scholar 

  2. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  3. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (Mosk. Fiz. Tekh. Inst., Moscow, 1997; CRC, Boca Raton, 1998).

    Google Scholar 

  4. I. S. Stekol'nikov, Izv. Akad. Nauk SSSR, Otd. Tekn. Nauk 5, 133 (1957).

    Google Scholar 

  5. V. P. Larionov, Élektrichestvo, No. 8, 72 (1961).

  6. Les Renardieres Group, Electra 53, 3 (1977).

    Google Scholar 

  7. E. M. Bazelyan, V. I. Levitov, and A. Z. Ponizovsky, in Proceedings of the 3rd International Symposium on High-Voltage Engineering, Milan, 1979, p. 1.

  8. R. T. Waters, IEE Proc. A 128, 319 (1981).

    Google Scholar 

  9. E. I. Anisimov, O. V. Bogdanov, A. S. Gayvaronskii, et al., Élektrichestvo, No. 11, 55 (1988).

  10. A. S. Gayvoronskii and A. G. Ovsjannikov, in Proceedings of the 9th International Conference on Atmospheric Electricity, St. Petersburg, 1992, p. 792.

  11. E. M. Bazelyan and I. M. Razhanskii, Spark Discharge in Air (Nauka, Novosibirsk, 1988).

    Google Scholar 

  12. J. N. Ross, B. Jones, and R. T. Waters, Electra 53, 85 (1977).

    Google Scholar 

  13. I. Gallimberti, J. Phys. (Paris) 40, 193 (1979).

    Article  ADS  Google Scholar 

  14. A. Bondiou and I. Gallimberti, J. Phys. D 27, 1252 (1994).

    Article  ADS  Google Scholar 

  15. Yu. N. Vershinin and I. M. Razhanskii, Élektrichestvo, No. 6, 46 (1976).

  16. I. M. Razhanskii, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 3, 41 (1976).

  17. N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, and N. A. Dyatko, J. Phys. D 30, 1616 (1997).

    ADS  Google Scholar 

  18. N. L. Aleksandrov and E. M. Bazelyan, J. Phys. D 29, 740 (1996).

    ADS  Google Scholar 

  19. N. L. Aleksandrov and E. M. Bazelyan, J. Phys. D 29, 2873 (1996).

    ADS  Google Scholar 

  20. N. L. Aleksandrov, A. E. Bazelyan, E. M. Bazelyan, and I. V. Kochetov, Fiz. Plazmy 21, 60 (1995) [Plasma Phys. Rep. 21, 57 (1995)].

    Google Scholar 

  21. N. L. Aleksandrov, E. M. Bazelyan, N. A. Dyatko, and I. V. Kochetov, Fiz. Plazmy 24, 587 (1998) [Plasma Phys. Rep. 24, 541 (1998)].

    Google Scholar 

  22. R. L. Taylor, Can. J. Chem. 52, 1436 (1974).

    Google Scholar 

  23. É. I. Asinovskii, A. V. Kirillin, and V. L. Nizovskii, Stabilized Electric Arcs and Their Application in Thermophysical Experiment (Nauka, Moscow, 1992).

    Google Scholar 

  24. A. S. Predvoditelev, E. V. Stupochenko, A. S. Pleshanov, E. V. Samuilov, and I. B. Rozhdestvenskii, Tables of Thermodynamic Functions of Air (at Temperatures from 200 to 6000 K and Pressures from 0.00001 to 10 atm) (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1962).

    Google Scholar 

  25. Tables of Thermodynamic Functions of Air at Temperatures form 6000 to 12000 K and Pressures from 0.001 to 1000 atm, Ed. by A. S. Predvoditelev (Akad. Nauk SSSR, Moscow, 1957).

    Google Scholar 

  26. N. L. Aleksandrov and E. M. Bazelyan, J. Phys. D 31, 1343 (1998).

    Article  ADS  Google Scholar 

  27. Physics and Technology of Low-Temperature Plasma, Ed. by S. V. Dresvin (Atomizdat, Moscow, 1972).

    Google Scholar 

  28. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 27, No. 10, 2001, pp. 928–939.

Original Russian Text Copyright © 2001 by Aleksandrov, Bazelyan, Konchakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, N.L., Bazelyan, É.M. & Konchakov, A.M. Plasma parameters in the channel of a long leader in air. Plasma Phys. Rep. 27, 875–885 (2001). https://doi.org/10.1134/1.1409721

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1409721

Keywords

Navigation