Skip to main content
Log in

General features of the intrinsic ferroelectric coercive field

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The value of the intrinsic ferroelectric coercive field is obtained independently, from general energy considerations and from the predictions of several models of the ferroelectric state. All predictions yield a value of the order of the depolarization field, which is equal to the spontaneous polarization divided by the dielectric permittivity, and are consistent with the recent measurements of the intrinsic ferroelectric coercive field in ultrathin Langmuir-Blodgett films of copolymers of polyvinylidene fluoride with trifluoroethylene. Prior studies succeeded only in measuring the much smaller extrinsic coercive fields, which are limited by nucleation processes and domain motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg, Zh. Éksp. Teor. Fiz. 15, 739 (1945).

    Google Scholar 

  2. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  3. B. A. Strukov and A. P. Levanuk, Ferroelectric Phenomena in Crystals (Nauka, Moscow, 1995; Springer-Verlag, Berlin, 1998).

    Google Scholar 

  4. W. J. Merz, Phys. Rev. 95, 690 (1954).

    Article  ADS  Google Scholar 

  5. W. J. Merz, J. Appl. Phys. 27, 938 (1956).

    Article  Google Scholar 

  6. A. M. Bratkovsky and A. P. Levanyuk, Phys. Rev. Lett. 84, 3177 (2000).

    Article  ADS  Google Scholar 

  7. O. Auciello, J. F. Scott, and R. Ramesh, Phys. Today 51, 22 (1998).

    Google Scholar 

  8. K. Dimmler, M. Parris, D. Butler, et al., J. Appl. Phys. 61, 5467 (1987).

    Article  ADS  Google Scholar 

  9. J. F. Scott, Phase Transit. 30, 107 (1991).

    Google Scholar 

  10. Y. Ishibashi, in Ferroelectric Thin Films: Synthesis and Basic Properties, Ed. by C. Paz de Araujo, J. F. Scott, and G. W. Taylor (Gordon and Breach, Amsterdam, 1996), p. 135.

    Google Scholar 

  11. A. K. Tagantsev, Integr. Ferroelectr. 16, 237 (1997).

    Google Scholar 

  12. S. Ducharme, V. M. Fridkin, A. V. Bune, et al., Phys. Rev. Lett. 84, 175 (2000).

    Article  ADS  Google Scholar 

  13. A. V. Bune, V. M. Fridkin, S. Ducharme, et al., Nature 391, 874 (1998).

    Google Scholar 

  14. V. L. Ginzburg, J. Phys. USSR 10, 107 (1946).

    Google Scholar 

  15. V. L. Ginzburg, Zh. Éksp. Teor. Fiz. 19, 39 (1949).

    Google Scholar 

  16. A. F. Devonshire, Adv. Phys. 3, 85 (1954).

    Article  ADS  MATH  Google Scholar 

  17. L. M. Blinov, V. M. Fridkin, S. P. Palto, et al., Usp. Fiz. Nauk 170, 247 (2000).

    Google Scholar 

  18. F. Jona and G. Shirane, Ferroelectric Crystals (Macmillan, New York, 1962; Mir, Moscow, 1965).

    Google Scholar 

  19. P. J. Lock, Appl. Phys. Lett. 19, 390 (1971).

    Article  Google Scholar 

  20. G. A. Samara, Ferroelectrics 5, 25 (1973).

    Google Scholar 

  21. T. Maruyama, M. Saitoh, I. Sakai, et al., Appl. Phys. Lett. 73, 3524 (1998).

    Article  ADS  Google Scholar 

  22. M. A. Marcus, Ferroelectrics 40, 29 (1982).

    Google Scholar 

  23. T. Fukukawa, Ferroelectrics 57, 63 (1984).

    Google Scholar 

  24. K. Kimura and H. Ohigashi, Jpn. J. Appl. Phys. 25, 383 (1986).

    ADS  Google Scholar 

  25. S. Palto, L. Blinov, A. Bune, et al., Ferroelectr. Lett. Sect. 19, 65 (1995).

    Google Scholar 

  26. A. Bune, S. Ducharme, V. M. Fridkin, et al., Appl. Phys. Lett. 67, 3975 (1995).

    Article  ADS  Google Scholar 

  27. S. Palto, L. Blinov, E. Dubovik, et al., Europhys. Lett. 34, 465 (1996).

    Article  ADS  Google Scholar 

  28. L. M. Blinov, V. M. Fridkin, S. P. Palto, et al., Thin Solid Films 284–285, 474 (1996).

    Google Scholar 

  29. S. Ducharme, S. P. Palto, L. M. Blinov, and V. M. Fridkin, in Proceedings of the 6th Williamsburg Workshop on Fundamental Physics of Ferroelectrics, Ed. by R. Cohen and K. Rabe (American Inst. of Physics, Melville, 2000), p. 354.

    Google Scholar 

  30. S. Ducharme, A. V. Bune, V. M. Fridkin, et al., Phys. Rev. B 57, 25 (1998).

    Article  ADS  Google Scholar 

  31. A. V. Bune, C. Zhu, S. Ducharme, et al., J. Appl. Phys. 85, 7869 (1999).

    Article  ADS  Google Scholar 

  32. T. Tybell, C. H. Ahn, and J.-M. Triscone, Appl. Phys. Lett. 75, 856 (1999).

    Article  ADS  Google Scholar 

  33. E. D. Specht, H.-M. Christen, D. P. Norton, and L. A. Boatner, Phys. Rev. Lett. 80, 4317 (1998).

    Article  ADS  Google Scholar 

  34. J. F. M. Cillessen, M. W. J. Prins, and R. M. Wolf, J. Appl. Phys. 81, 2777 (1997).

    Article  ADS  Google Scholar 

  35. H. Ohigashi, K. Omote, H. Abe, and K. Koga, Jpn. J. Appl. Phys. 68, 1824 (1999).

    Google Scholar 

  36. H. Ohigashi, K. Omote, and T. Gomyo, Appl. Phys. Lett. 66, 3281 (1995).

    Article  ADS  Google Scholar 

  37. M. Hikosaka, K. Sakurai, H. Ohigashi, and T. Koizumi, Jpn. J. Appl. Phys. 32, 2029 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Fizika Tverdogo Tela, Vol. 43, No. 7, 2001, pp. 1268–1271.

Original English Text Copyright © 2001 by Fridkin, Ducharme.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fridkin, V.M., Ducharme, S. General features of the intrinsic ferroelectric coercive field. Phys. Solid State 43, 1320–1324 (2001). https://doi.org/10.1134/1.1386472

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1386472

Keywords

Navigation