Skip to main content
Log in

P-Matrix approach and parameters of low-energy scattering in the presence of a Coulomb potential

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The scattering of two charged strongly interacting particles is described on the basis of the P-matrix approach. In the P matrix, it is proposed to isolate explicitly the background term corresponding to purely Coulomb interaction, whereby it becomes possible to improve convergence of the expansions used and to obtain a correct asymptotic behavior of observables at high energies. The expressions for the purely Coulomb background P matrix, its poles and residues, and purely Coulomb eigenfunctions in the P-matrix approach are obtained. The nuclear-Coulomb parameters of the low-energy scattering of two charged hadrons are investigated on the basis of this approach combined with the method for isolating the background P matrix. Simple explicit expressions for the nuclear-Coulomb scattering length and effective range in terms of the residual P matrix are derived. For models of short-range strong interaction, these expressions give a general form of nuclear-Coulomb parameters for low-energy scattering. Specific applications of the general expressions derived in this study are exemplified by considering, on the basis of these expressions, some exactly solvable models of strong interaction, including the hard-core model, and, for these models, the nuclear-Coulomb parameters for low-energy scattering at arbitrary values of the orbital angular momentum are found explicitly for the first time. In particular, the nuclear-Coulomb scattering length and effective range are obtained explicitly for the boundary-condition model, the model of a hard-core delta-shell potential, the Margenau model, and the model of square-well hard-core potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Jaffe and F. E. Low, Phys. Rev. D 19, 2105 (1979).

    Article  ADS  Google Scholar 

  2. B. L. G. Bakker and P. J. Mulders, Adv. Nucl. Phys. 17, 1 (1986).

    Google Scholar 

  3. V. A. Babenko and N. M. Petrov, Ukr. Fiz. Zh. 32, 971 (1987).

    MathSciNet  Google Scholar 

  4. V. A. Babenko, N. M. Petrov, and A. G. Sitenko, Can. J. Phys. 70, 252 (1992).

    ADS  Google Scholar 

  5. E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).

    Article  ADS  Google Scholar 

  6. A. Lane and R. Thomas, R-Matrix Theory of Nuclear Reactions (Los Alamos, 1958; Inostrannaya Literatura, Moscow, 1960).

  7. V. A. Babenko and N. M. Petrov, Yad. Fiz. 45, 1619 (1987) [Sov. J. Nucl. Phys. 45, 1004 (1987)].

    Google Scholar 

  8. V. A. Babenko and N. M. Petrov, Yad. Fiz. 59, 2154 (1996) [Phys. At. Nucl. 59, 2074 (1996)].

    Google Scholar 

  9. L. D. Landau and Ya. A. Smorodinskii, Zh. Éksp. Teor. Fiz. 14, 269 (1944).

    Google Scholar 

  10. G. F. Chew and M. L. Goldberger, Phys. Rev. 75, 1637 (1949).

    Article  ADS  Google Scholar 

  11. J. Schwinger, Phys. Rev. 78, 135 (1950).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. V. D. Mur, A. E. Kudryavtsev, and V. S. Popov, Yad. Fiz. 37, 1417 (1983) [Sov. J. Nucl. Phys. 37, 844 (1983)].

    Google Scholar 

  13. H. van Haeringen, Nucl. Phys. A 253, 355 (1975).

    ADS  Google Scholar 

  14. H. van Haeringen, J. Math. Phys. 18, 927 (1977).

    ADS  Google Scholar 

  15. H. van Haeringen and L. P. Kok, Phys. Lett. A 82, 317 (1981).

    MathSciNet  ADS  Google Scholar 

  16. L. P. Kok, J. W. de Maag, H. H. Brouwer, and H. van Haeringen, Phys. Rev. C 26, 2381 (1982).

    ADS  Google Scholar 

  17. J. W. de Maag, L. P. Kok, and H. van Haeringen, J. Math. Phys. 25, 684 (1984).

    MathSciNet  ADS  Google Scholar 

  18. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (Dover, New York, 1965; Nauka, Moscow, 1973).

    Google Scholar 

  19. A. G. Sitenko, Theory of Nuclear Reactions (World Sci., Singapore, 1990).

    Google Scholar 

  20. J. G. Beckerley, Phys. Rev. 67, 11 (1945).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. J. Humblet, Ann. Phys. (N.Y.) 155, 461 (1984).

    Article  MathSciNet  Google Scholar 

  22. H. A. Bethe, Phys. Rev. 76, 38 (1949).

    MATH  ADS  Google Scholar 

  23. J. D. Jackson and J. M. Blatt, Rev. Mod. Phys. 22, 77 (1950).

    Article  ADS  Google Scholar 

  24. T. L. Trueman, Nucl. Phys. 26, 57 (1961).

    Google Scholar 

  25. E. Lambert, Helv. Phys. Acta 42, 667 (1969).

    Google Scholar 

  26. B. Tromborg and J. Hamilton, Nucl. Phys. B 76, 483 (1974).

    Article  ADS  Google Scholar 

  27. A. M. Badalyan, L. P. Kok, M. I. Polikarpov, and Yu. A. Simonov, Phys. Rep. 82, 31 (1982).

    Article  ADS  Google Scholar 

  28. F. L. Yost, J. A. Wheeler, and G. Breit, Phys. Rev. 49, 174 (1936).

    Article  ADS  Google Scholar 

  29. F. S. Ham, Q. Appl. Math. 15, 31 (1957).

    MathSciNet  MATH  Google Scholar 

  30. H. Margenau, Phys. Rev. 59, 37 (1941).

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 64, No. 2, 2001, pp. 278–288.

Original Russian Text Copyright © 2001 by Babenko, Petrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, V.A., Petrov, N.M. P-Matrix approach and parameters of low-energy scattering in the presence of a Coulomb potential. Phys. Atom. Nuclei 64, 233–242 (2001). https://doi.org/10.1134/1.1349444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1349444

Keywords

Navigation