Skip to main content
Log in

Arsenic cluster superlattice in gallium arsenide grown by low-temperature molecular-beam epitaxy

  • Atomic Structure and Non-Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Molecular-beam epitaxy at 200 °C is used to grow an InAs/GaAs superlattice containing 30 InAs delta-layers with a nominal thickness of 1 monolayer, separated by GaAs layers of thickness 30 nm. It is found that the excess arsenic concentration in such a superlattice is 0.9×1020 cm−3. Annealing the samples at 500 and 600 °C for 15 min leads to precipitation of the excess arsenic mainly into the InAs delta-layers. As a result, a superlattice of two-dimensional sheets of nanoscale arsenic clusters, which coincides with the superlattice of the InAs delta-layers in the GaAs matrix, is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Smith, A. R. Calawa, C. L. Chen, M. J. Mantra, and L. J. Mahoney, Electron. Dev. Lett. 9, 77 (1988).

    Google Scholar 

  2. M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B. Y. Tsaur, and A. R. Calawa, Appl. Phys. Lett. 54, 1831 (1989).

    Article  ADS  Google Scholar 

  3. M. R. Melloch, K. Mahalingam, N. Otsuka, J. M. Woodall, and A. C. Warren, J. Cryst. Growth 111, 39 (1991).

    Article  Google Scholar 

  4. N. A. Bert, A. I. Veinger, M. D. Vilisova, S. I. Goloshchapov, I. V. Ivonin, S. V. Kozyrev, A. E. Kunitsyn, L. G. Lavrent’eva, D. I. Lubyshev, V. V. Preobrazhenskii, B. R. Semyagin, V. V. Tret’yakov, V. V. Chaldyshev, and M. P. Yakubenya, Fiz. Tverd. Tela (St. Petersburg) 35, 2609 (1993) [Phys. Solid State 35, 1289 (1993)].

    Google Scholar 

  5. J. K. Luo, H. Thomas, D. V. Morgan, D. Westwood, and R. H. Williams, Semicond. Sci. Technol. 9, 2199 (1994).

    Article  ADS  Google Scholar 

  6. T. M. Cheng, C. V. Chang, A. Chin, M. F. Huang, and J. H. Huang, Appl. Phys. Lett. 64, 2517 (1994).

    ADS  Google Scholar 

  7. N. A. Bert, V. V. Chaldyshev, D. I. Lubyshev, V. V. Preobrazhenskii, and B. R. Semyagin, Fiz. Tekh. Poluprovodn. 29, 2242 (1995) [Semiconductors 29, 1170 (1995)].

    Google Scholar 

  8. N. A. Bert, V. V. Chaldyshev, N. N. Faleev, A. E. Kunitsyn, D. I. Lubyshev, V. V. Preobrazhenskii, B. R. Semyagin, and V. V. Tret’yakov, Semicond. Sci. Technol. 12, 51 (1997).

    Article  ADS  Google Scholar 

  9. X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, Appl. Phys. Lett. 67, 279 (1995).

    ADS  Google Scholar 

  10. N. A. Bert, V. V. Chaldyshev, A. E. Kunitsyn, Yu. G. Musihin, N. N. Faleev, V. V. Tret’yakov, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Appl. Phys. Lett. 70, 3146 (1997).

    Article  ADS  Google Scholar 

  11. V. V. Chaldyshev, A. E. Kunitsyn, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, V. V. Tret’yakov, and N. N. Faleev, Fiz. Tekh. Poluprovodn. 32, 778 (1998) [Semiconductors 32, 692 (1998)].

    Google Scholar 

  12. N. A. Bert, Yu. G. Musikhin, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, A. A. Suvorova, V. V. Chaldyshev, N. N. Faleev, and P. Werner, Fiz. Tekh. Poluprovodn. 32, 769 (1998) [Semiconductors 32, 683 (1998)].

    Google Scholar 

  13. N. N. Faleev, V. V. Chaldyshev, A. E. Kunitsyn, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, and V. V. Tret’yakov, Fiz. Tekh. Poluprovodn. 32, 24 (1998) [Semiconductors 32, 19 (1998)].

    Google Scholar 

  14. M. Martin, Appl. Phys. Lett. 39, 747 (1981).

    Article  ADS  Google Scholar 

  15. V. V. Chaldyshev, N. A. Bert, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Mater. Sci. Eng., A 238, 148 (1997).

    Google Scholar 

  16. I. M. Lifshitz and V. V. Slezov, Zh. Éksp. Teor. Fiz. 35, 479 (1958) [Sov. Phys. JETP 8, 331 (1959)].

    Google Scholar 

  17. Z. Liliental-Weber, A. Claverie, J. Washburn, F. Smith, and R. Calawa, Appl. Phys. A 53, 141 (1991).

    Article  Google Scholar 

  18. N. A. Bert and V. V. Chaldyshev, Fiz. Tekh. Poluprovodn. 30, 1889 (1996) [Semiconductors 30, 988 (1996)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 32, 1161–1164 (October 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaldyshev, V.V., Preobrazhenskii, V.V., Putyato, M.A. et al. Arsenic cluster superlattice in gallium arsenide grown by low-temperature molecular-beam epitaxy. Semiconductors 32, 1036–1039 (1998). https://doi.org/10.1134/1.1187561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187561

Keywords

Navigation