Skip to main content
Log in

Amplitude-dependent elastic-modulus defect in the main dislocation-hysteresis models

  • Defects. Dislocations. Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The amplitude-dependent defect of the elastic modulus has been calculated for the three main dislocation-hysteresis models: (i) breakaway hysteresis of Granato-Lücke, (ii) Davidenkov hysteresis, and (iii) friction hysteresis without restoring force (WRF). The ratio r of the amplitude-dependent decrement to the modulus defect has been considered for all three types of loops, and it is shown that, in a general case, r depends on the vibration amplitude. In the particular case of power-law amplitude dependences of the decrement and the modulus defect, r does not depend on amplitude and depends only on the exponent n. Expressions have been obtained for the r(n) dependence for the three hysteresis-loop types, and it is demonstrated that r can serve to identify the loop shape. A comparison of calculated curves with experimental data accumulated to date shows that most of them lie closer to the Davidenkov and WRF hystereses. An analysis has been made of the applicability of the secant modulus-defect approximation used to derive the dislocation strain from internal-friction measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Davidenkov, Zh. Tekh. Fiz. 8, 483 (1938).

    Google Scholar 

  2. T. A. Read, Phys. Rev. 58, 371 (1940).

    Article  ADS  Google Scholar 

  3. T. A. Read, Trans. AIME 143, 30 (1941).

    Google Scholar 

  4. A. S. Nowick, Phys. Rev. 80, 249 (1950).

    Article  ADS  Google Scholar 

  5. A. V. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).

    Google Scholar 

  6. S. Asano, J. Phys. Soc. Jpn. 29, 952 (1970).

    Google Scholar 

  7. K. Ishii, J. Phys. Soc. Jpn. 52, 141 (1983).

    Google Scholar 

  8. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, New York, 1972).

    Google Scholar 

  9. O. Boser, J. Appl. Phys. 54, 2338 (1983).

    Article  ADS  Google Scholar 

  10. E. K. Naimi, Phys. Status Solidi A 72, 825 (1982); Fiz. Met. Metalloved. 54, 601 (1982).

    Google Scholar 

  11. A. V. Granato, PhD Thesis, Brown University, Providence (1955).

  12. J. S. Koehler, Imperfections in Nearly Perfect Crystals, edited by W. Shockley, J. H. Hollomon, R. Mauerer, and F. Seitz (Wiley, New York, 1952), p. 197.

    Google Scholar 

  13. A. B. Lebedev, Philos. Mag. A 74, 137 (1996).

    Google Scholar 

  14. A. B. Lebedev, J. Phys. IV 6, C8–325 (1996).

    Google Scholar 

  15. V. L. Indenbom and V. M. Chernov, Phys. Status Solidi A 14, 347 (1972).

    Google Scholar 

  16. A. V. Granato and K. Lücke, J. Appl. Phys. 52, 7136 (1981).

    Article  ADS  Google Scholar 

  17. M. Gabbay, A. Vincent, and G. Fantozzi, Phys. Status Solidi A 100, 121 (1987).

    Google Scholar 

  18. R. B. Schwarz, Acta Metall. 29, 311 (1981).

    Google Scholar 

  19. V. I. Belan and A. I. Landau, Fiz. Met. Metalloved. 65, 259 (1988).

    Google Scholar 

  20. H. Kressel and N. Brown, Dislocation Dynamics, edited by A. R. Rosenfield, G. T. Hahn, A. L. Bement, and R. I. Jaffe (McGraw-Hill, New York, 1968), p. 337.

    Google Scholar 

  21. S. B. Kustov and S. N. Golyandin, M 3D III: Mechanics and Mechanisms of Materials Damping, edited by A. Wolfenden and V. K. Kinra (ASTM, 1997), p. 22.

  22. B. J. Lazan, Damping of Materials and Members in Structural Mechanics (Pergamon Press, Oxford, 1968).

    Google Scholar 

  23. Y. Nishino and S. Asano, Phys. Status Solidi A 138, K9 (1993).

    Google Scholar 

  24. S. B. Kustov, Cand. Sci. Thesis, Ioffe Institute (Leningrad, 1989).

    Google Scholar 

  25. A. B. Lebedev and S. B. Kustov, Phys. Status Solidi A 136, K85 (1993).

    Google Scholar 

  26. G. Gremaud, J. Phys. (France) 48, C8–15 (1987).

    Google Scholar 

  27. G. S. Baker, J. Appl. Phys. 33, 1730 (1962).

    Google Scholar 

  28. Y. Nishino and S. Asano, Phys. Status Solidi A 151, 83 (1995).

    Google Scholar 

  29. A. B. Lebedev and S. B. Kustov, Phys. Status Solidi A 116, 645 (1989).

    Google Scholar 

  30. A. B. Lebedev, J. Alloys Compd. 211–212, 177 (1994); J. Phys. IV 6, C8-255 (1996).

    Google Scholar 

  31. J. Zhang, R. J. Perez, and E. J. Lavernia, M 3D III: Mechanics and Mechanisms of Materials Damping, edited by A. Wolfenden and V. K. Kinra (ASTM, 1997), p. 313.

  32. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Anelasticity of Crystals [In Russian] (Nauka, Moscow, 1985).

    Google Scholar 

  33. B. I. Smirnov, V. A. Chelnokov, and N. L. Kuz’min, Fiz. Tverd. Tela (Leningrad) 25, 519 (1983) [Sov. Phys. Solid State 25, 293 (1983)].

    Google Scholar 

  34. R. B. Schwarz, J. Phys. (France) 46, C10–207 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 41, 1214–1221 (July 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, A.B. Amplitude-dependent elastic-modulus defect in the main dislocation-hysteresis models. Phys. Solid State 41, 1105–1111 (1999). https://doi.org/10.1134/1.1130947

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130947

Keywords

Navigation