Skip to main content
Log in

Proteinopathies, neurodegenerative disorders with protein aggregation-based pathology

  • Molecular Biomedicine Special Issue
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A number of neurodegenerative disorders were recently coalesced into a group of proteinopathies based on the similarity of molecular mechanisms underlying their pathogenesis. A key step in the development of proteinopathies is a structural change that triggers aggregation of the proteins that are intrinsically prone to form aggregates owing to their physical and chemical properties. The review considers the recent progress in the field of proteinopathies with a special focus on the properties of aggregation-prone proteins, the main stages of the development of molecular pathology, and the role of cell clearance systems in the progression of neurodegeneration. Recent modifications made to the nomenclature of neurodegenerative diseases on the basis of the molecular mechanism of neurodegeneration are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NDD:

neurodegenerative disorder

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

UPS:

ubiquitin-proteasomal system

APP:

β-amyloid precursor protein

References

  1. Cummings J.L. 2003. Toward a molecular neuropsychiatry of neurodegenerative diseases. Ann. Neurol. 54, 147–154.

    Article  PubMed  CAS  Google Scholar 

  2. Jellinger K.A. 2010. Basic mechanisms of neurodegeneration: A critical update. J. Cell Mol. Med. 14, 57–87.

    Article  Google Scholar 

  3. Skovronsky D.M., Lee V.M., Trojanowski J.Q. 2006. Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications. Annu. Rev. Pathol. 1, 151–170.

    Article  PubMed  CAS  Google Scholar 

  4. Kurz A., Perneczky R. 2009. Neurobiology of cognitive disorders. Curr. Opin. Psychiatry. 22, 546–551.

    Article  PubMed  Google Scholar 

  5. Bekris L.M., Mata I.F., Zabetian C.P. 2010. The genetics of Parkinson disease. J. Geriatr. Psychiatry Neurol. 23, 228–242.

    Article  PubMed  Google Scholar 

  6. Bertram L., Tanzi R.E. 2008. Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses. Nature Rev. Neurosci. 9, 768–778.

    Article  CAS  Google Scholar 

  7. See T.M., LaMarre A.K., Lee S.E., Miller B.L. 2010. Genetic causes of frontotemporal degeneration. J. Geriatr. Psychiatry Neurol. 23, 260–268.

    Article  PubMed  Google Scholar 

  8. Santpere G., Ferrer I. 2009. LRRK2 and neurodegeneration. Acta Neuropathol. 117, 227–246.

    Article  PubMed  CAS  Google Scholar 

  9. Goedert M., Jakes R. 2005. Mutations causing neurodegenerative tauopathies. Biochim. Biophys. Acta. 1739, 240–250.

    PubMed  CAS  Google Scholar 

  10. Woodruff-Pak D.S. 2008. Animal models of Alzheimer’s disease: therapeutic implications. J. Alzheimer’s Dis. 15, 507–521.

    CAS  Google Scholar 

  11. Bugos O., Bhide M., Zilka N. 2009. Beyond the rat models of human neurodegenerative disorders. Cell Mol. Neurobiol. 29, 859–869.

    Article  PubMed  Google Scholar 

  12. Ferrante R.J. 2009. Mouse models of Huntington’s disease and methodological considerations for therapeutic trials. Biochim. Biophys. Acta. 1792, 506–520.

    PubMed  CAS  Google Scholar 

  13. Garringer H.J., Murrell J., D’Adamio L., Ghetti B., Vidal R. 2010. Modeling familial British and Danish dementia. Brain Struct. Funct. 214, 235–244.

    Article  PubMed  Google Scholar 

  14. Klein R.L., Wang D.B., King M.A. 2009. Versatile somatic gene transfer for modeling neurodegenerative diseases. Neurotox. Res. 16, 329–342.

    Article  PubMed  CAS  Google Scholar 

  15. Ninkina N.N., Ustyugov A.A., Buchman V.L. 2008. Modeling synucleinopathies in genetically modified animals: Successes and failures. Mol. Biol. (Moscow). 42, 747–761.

    Article  CAS  Google Scholar 

  16. Buchman V.L., Ninkina N. 2008. Modulation of alpha-synuclein expression in transgenic animals for modelling synucleinopathies: Is the juice worth the squeeze? Neurotox. Res. 14, 329–341.

    Article  PubMed  Google Scholar 

  17. Telling G.C. 2008. Transgenic mouse models of prion diseases. Methods Mol. Biol. 459, 249–263.

    Article  PubMed  CAS  Google Scholar 

  18. Murphy R., Tsai A. 2006. Misbehaving Proteins: Protein (Mis)Folding, Aggregation, and Stability. Springer.

  19. Tsvetkov P.O., Kulikova A.A., Golovin A.V., et al. 2010. Minimal Zn(2+) binding site of amyloid-β. Biophys. J. 99, L84–L86.

    Article  PubMed  CAS  Google Scholar 

  20. Ingelsson M., Hyman B.T. 2002. Disordered proteins in dementia. Ann. Med. 34, 259–271.

    Article  PubMed  CAS  Google Scholar 

  21. Maltsev A.V., Galzitskaya O.V. 2010. Formation and participation of nano-amyloids in pathogenesis of Alzheimer’s disease and other amyloidogenic diseases. Biomed. Khim. 56, 624–638.

    CAS  Google Scholar 

  22. Singleton A.B., Farrer M., Johnson J., et al. 2003. Alpha-synuclein locus triplication causes Parkinson’s disease. Science. 302, 841.

    Article  PubMed  CAS  Google Scholar 

  23. Citron M., Westaway D., Xia W., et al. 1997. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid-protein in both transfected cells and transgenic mice. Nature Med. 3, 67–72.

    Article  PubMed  CAS  Google Scholar 

  24. Cobb N.J., Surewicz W.K. 2009. Prion diseases and their biochemical mechanisms. Biochemistry. 48, 2574–2585.

    Article  PubMed  CAS  Google Scholar 

  25. Angot E., Steiner J.A., Hansen C., et al. 2010. Are synucleinopathies prion-like disorders? Lancet Neurol. 9, 1128–1138.

    Article  PubMed  Google Scholar 

  26. Cushman M., Johnson B. S., King O.D., et al. 2010. Prion-like disorders: Blurring the divide between transmissibility and infectivity. J. Cell Sci. 123, 1191–1201.

    Article  PubMed  CAS  Google Scholar 

  27. Jellinger K.A. 2003. General aspects of neurodegeneration. J. Neural. Transm. Suppl. 65, 101–144.

    PubMed  Google Scholar 

  28. Uversky V.N. 2008. Alpha-synuclein misfolding and neurodegenerative diseases. Curr. Protein Pept. Sci. 9, 507–540.

    Article  PubMed  CAS  Google Scholar 

  29. Adlard P.A., Bush A.I. 2006. Metals and Alzheimer’s disease. J. Alzheimer’s Dis. 10, 145–163.

    Google Scholar 

  30. Zakharova E.I., Storozheva Z.I., Dudchenko A.M., Kubatiev A.A. 2010. Chronic cerebral ischaemia forms new cholinergic mechanisms of learning and memory. Int. J. Alzheimer’s Dis. 20. doi: 10.4061/2010/954589.

  31. Shcherbatykh I., Carpenter D.O. 2007. The role of metals in the etiology of Alzheimer’s disease. J. Alzheimer’s Dis. 11, 191–205.

    CAS  Google Scholar 

  32. Kozin S.A., Zirah S., Rebuffat S., et al. 2001. Zinc binding to Alzheimer’s Abeta(1–16) peptide results in stable soluble complex. Biochem. Biophys. Res. Commun. 285, 959–964.

    Article  PubMed  CAS  Google Scholar 

  33. Kozin S.A., Mezentsev Y.V., Kulikova A.A., et al. 2011. Zinc-induced dimerization of the amyloid-β metal-binding domain 1-16 is mediated by residues 11-14. Mol. Biosyst. 7, 1053–1055.

    Article  PubMed  CAS  Google Scholar 

  34. Atwood C.S., Martins R.N., Smith M.A., Perry G. 2002. Senile plaque composition and posttranslational modification of amyloid-beta peptide and associated proteins. Peptides. 23, 1343–1350.

    Article  PubMed  CAS  Google Scholar 

  35. Oueslati A., Fournier M., Lashuel H.A. 2010. Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: Implications for Parkinson’s disease pathogenesis and therapies. Prog. Brain Res. 183, 115–145.

    Article  PubMed  CAS  Google Scholar 

  36. Martin L., Latypova X., Terro F. 2011. Post-translational modifications of tau protein: Implications for Alzheimer’s disease. Neurochem. Int. 58, 458–471.

    Article  PubMed  CAS  Google Scholar 

  37. Zirah S., Kozin S.A., Mazur A.K., et al. 2006. Structural changes of region 1-16 of the Alzheimer disease amyloid beta-peptide upon zinc binding and in vitro aging. J. Biol. Chem. 281, 2151–2161.

    Article  PubMed  CAS  Google Scholar 

  38. Tsvetkov P.O., Popov I.A., Nikolaev E.N., et al. 2008. Isomerization of the Asp7 residue results in zinc-induced oligomerization of Alzheimer’s disease amyloid beta(1-16) peptide. ChemBioChem. 9, 1564–1567.

    Article  PubMed  CAS  Google Scholar 

  39. Saha A.R., Ninkina N.N., Hanger D.P., et al. 2000. Induction of neuronal death by alpha-synuclein. Eur. J. Neurosci. 12, 3073–3077.

    Article  PubMed  CAS  Google Scholar 

  40. Caughey B., Lansbury P.T. 2003. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298.

    Article  PubMed  CAS  Google Scholar 

  41. Stefanova N., Reindl M., Neumann M., et al. 2005. Oxidative stress in transgenic mice with oligodendroglial alpha-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy. Am. J. Pathol. 166, 869–876.

    Article  PubMed  CAS  Google Scholar 

  42. Behl C., Davis J.B., Lesley R., Schubert D. 1994. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 77, 817–827.

    Article  PubMed  CAS  Google Scholar 

  43. Tanaka Y., Engelender S., Igarashi S., et al. 2001. Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet. 10, 919–926.

    Article  PubMed  CAS  Google Scholar 

  44. Kayed R., Head E., Thompson J.L., et al. 2003. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 300, 486–489.

    Article  PubMed  CAS  Google Scholar 

  45. Kabashi E., Valdmanis P.N., Dion P., et al. 2008. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genet. 40, 572–574.

    Article  PubMed  CAS  Google Scholar 

  46. Vance C., Rogelj B., Hortobagyi T., et al. 2009. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 323, 1208–1211.

    Article  PubMed  CAS  Google Scholar 

  47. Kwiatkowski T.J., Bosco D.A., Leclerc A.L., et al. 2009. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 323, 1205–1208.

    Article  PubMed  CAS  Google Scholar 

  48. Mackenzie I.R., Neumann M., Bigio E.H., et al. 2009. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: Consensus recommendations. Acta Neuropathol. 117, 15–18.

    Article  PubMed  Google Scholar 

  49. Hicks G.G., Singh N., Nashabi A., et al. 2000. Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nature Genet. 24(2), 175–179.

    Article  PubMed  CAS  Google Scholar 

  50. Cook C., Zhang Y.J., Xu Y.F., et al. 2008. TDP-43 in neurodegenerative disorders. Exp. Opin. Biol. Ther. 8(7), 969–978.

    Article  CAS  Google Scholar 

  51. Iguchi Y., Katsuno M., Niwa J., et al. 2009. TDP-43 depletion induces cell damage through dysregulation of Rho family GTPases. J. Biol. Chem. 284(33), 22059–22066.

    Article  PubMed  CAS  Google Scholar 

  52. Ninkina N., Papachroni K., Robertson D.C., et al. 2003. Neurons expressing the highest levels of gammasynuclein are unaffected by targeted inactivation of the gene. Mol. Cell Biol. 23, 8233–8245.

    Article  PubMed  CAS  Google Scholar 

  53. Sailer A., Büeler H., Fischer M., et al. 1994. No propagation of prions in mice devoid of PrP. Cell. 77(7), 967–968.

    Article  PubMed  CAS  Google Scholar 

  54. Anwar S., Peters O., Millership S., et al. 2011. Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family. J. Neurosci. 31, 7264–7274.

    Article  PubMed  CAS  Google Scholar 

  55. Weyer S.W., Klevanski M., Delekate A., et al. 2011. APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J. 30(11), 2266–2280.

    Article  PubMed  CAS  Google Scholar 

  56. Senior S.L. Ninkina N., Deacon R., et al. 2008. Increased striatal dopamine release and hyperdopam-inergic-like behaviour in mice lacking both alpha-synuclein and gamma-synuclein. Eur. J. Neurosci. 27, 947–957.

    Article  PubMed  Google Scholar 

  57. Baka I.D., Ninkina N.N., Pinon L.G., et al. 1996. Intracellular compartmentalization of two differentially spliced s-rex/NSP mRNAs in neurons. Mol. Cell Neurosci. 7, 289–303.

    Article  PubMed  CAS  Google Scholar 

  58. Greten-Harrison B., Polydoro M., Tomita M.M., et al. 2010. αβΓ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proc. Natl. Acad. Sci. U. S. A. 107, 19573–19578.

    Article  PubMed  CAS  Google Scholar 

  59. Buchman V.L, Adu J., Pinon L.G.P., et al. 1998. Persyn, a member of the synuclein family, influences neurofilament network integrity. Nature Neurosci. 1, 101–103.

    Article  PubMed  CAS  Google Scholar 

  60. Nguyen J.V., Soto I., Kim K.Y., et al. 2011. Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proc. Natl. Acad. Sci. U. S. A. 108, 1176–1181.

    Article  PubMed  CAS  Google Scholar 

  61. Fändrich M. 2007. On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol. Life Sci. 64, 2066–2078.

    Article  PubMed  CAS  Google Scholar 

  62. Sipe J.D, Benson M.D., Buxbaum J.N., et al. 2010. Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid. 17(3–4), 101–104.

    Article  PubMed  CAS  Google Scholar 

  63. Lührs T., Ritter C., Adrian M., et al. 2005. 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc. Natl. Acad. Sci. U. S. A. 102, 17342–17347.

    Article  PubMed  CAS  Google Scholar 

  64. Petkova A.T., Ishii Y., Balbach J.J., et al. 2002. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. U. S. A. 99, 16742–16747.

    Article  PubMed  CAS  Google Scholar 

  65. Iwata K., Fujiwara T., Matsuki Y., et al. 2006. 3D structure of amyloid protofilaments of beta2-micro-globulin fragment probed by solid-state NMR. Proc. Natl. Acad. Sci. U. S. A. 103, 18119–18124.

    Article  PubMed  CAS  Google Scholar 

  66. Shewmaker F., Wickner R.B., Tycko R. 2006. Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc. Natl. Acad. Sci. U. S. A. 103, 19754–19759.

    Article  PubMed  CAS  Google Scholar 

  67. Nelson R., Sawaya M. R., Balbirnie M., et al. 2005. Structure of the cross-beta spine of amyloid-like fibrils. Nature. 435, 773–778.

    Article  PubMed  CAS  Google Scholar 

  68. Chiti F., Dobson C.M. 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.

    Article  PubMed  CAS  Google Scholar 

  69. Tycko R. 2011. Solid-state NMR studies of amyloid fibril structure. Annu. Rev. Phys. Chem. 62, 279–299.

    Article  PubMed  CAS  Google Scholar 

  70. Guijarro J.I., Sunde M., Jones J.A., et al. 1998. Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. U. S. A. 95, 4224–4228.

    Article  PubMed  CAS  Google Scholar 

  71. Fowler D.M., Koulov A.V., Alory-Jost C., et al. 2006. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, e6.

    Article  PubMed  CAS  Google Scholar 

  72. Saupe S.J. 2007. A short history of small s, a prion of the fugus Podospora anserine. Prion. 1, 110–115.

    Article  PubMed  Google Scholar 

  73. Wang X., Hammer N.D., Chapman M.R. 2008. The molecular basis of functional bacterial amyloid polymerization and nucleation. J. Biol. Chem. 283, 21530–21539.

    Article  PubMed  CAS  Google Scholar 

  74. Bemporad F., Calloni G., Campioni S., et al. 2006. Sequence and structural determinants of amyloid fibril formation. Acc. Chem. Res. 39, 620–627.

    Article  PubMed  CAS  Google Scholar 

  75. Heise H., Hoyer W., Becker S., et al. 2005. Molecularlevel secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid state NMR. Proc. Natl. Acad. Sci. U. S. A. 102, 15871–15876.

    Article  PubMed  CAS  Google Scholar 

  76. Madine J., Copland A., Serpell L. C., Middleton D. A. 2009. Cross-beta spine architecture of fibrils formed by the amyloidogenic segment NFGSVQFV of medin from solid-state NMR and X-ray fiber diffraction measurements. Biochemistry. 48, 3089–3099.

    Article  PubMed  CAS  Google Scholar 

  77. Luca S., Yau W. M., Leapman R., Tycko R. 2007. Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid state NMR. Biochemistry. 46, 13505–13522.

    Article  PubMed  CAS  Google Scholar 

  78. Paravastu A.K., Petkova A.T., Tycko R. 2006. Polymorphic fibril formation by residues 10–40 of the Alzheimer’s β-amyloid peptide. Biophys. J. 90, 4618–4629.

    Article  PubMed  CAS  Google Scholar 

  79. Verel R., Tomka I.T., Bertozzi C., et al. 2008. Polymorphism in an amyloidlike fibril-forming model peptide. Angew. Chem. Int. Ed. Engl. 47, 5842–5845.

    Article  PubMed  CAS  Google Scholar 

  80. Petkova A.T., Leapman R.D., Guo Z.H., et al. 2005. Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science. 307, 262–265.

    Article  PubMed  CAS  Google Scholar 

  81. Sawaya M.R., Sambashivan S., Nelson R., et al. 2007. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature. 447, 453–457.

    Article  PubMed  CAS  Google Scholar 

  82. Lesné S., Koh M.T., Kotilinek L., et al. 2006. A specific amyloid-β protein assembly in the brain impairs memory. Nature. 440, 352–357.

    Article  PubMed  CAS  Google Scholar 

  83. Shankar G.M., Li S., Mehta T.H., et al. 2008. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Med. 14, 837–842.

    Article  PubMed  CAS  Google Scholar 

  84. Hardy J., Selkoe D.J. 2002. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  85. Paravastu A.K., Qahwash I., Leapman R.D., et al. 2009. Seeded growth of β-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc. Natl. Acad. Sci. U. S. A. 106, 7443–7448.

    Article  PubMed  CAS  Google Scholar 

  86. Geser F., Martinez-Lage M., Kwong L.K., et al. 2009. Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: The TDP-43 diseases. J. Neurol. 256, 1205–1214.

    Article  PubMed  Google Scholar 

  87. Galpern W.R., Lang A.E. 2006. Interface between tauopathies and synucleinopathies: A tale of two proteins. Ann. Neurol. 59, 449–458.

    Article  PubMed  CAS  Google Scholar 

  88. Alafuzoff I., Parkkinen L., Al-Sarraj S., et al. 2008. Assessment of alpha-synuclein pathology: A study of the BrainNet Europe Consortium. J. Neuropathol. Exp. Neurol. 67, 125–143.

    Article  PubMed  Google Scholar 

  89. Kovacs G.G., Alafuzoff I., Al-Sarraj S., et al. 2008. Mixed brain pathologies in dementia: The BrainNet Europe consortium experience. Dement. Geriatr. Cogn. Disord. 26, 343–350.

    Article  PubMed  Google Scholar 

  90. Dohm C.P., Kermer P., Bähr M. 2008. AAggregopathy in neurodegenerative diseases: Mechanisms and therapeutic implication. Neurodegener. Dis. 5, 321–338.

    Article  PubMed  CAS  Google Scholar 

  91. Bossy-Wetzel E., Schwarzenbacher R., Lipton S.A. 2004. Molecular pathways to neurodegeneration. Nature Med. Suppl. 10, S2–S9.

    Article  CAS  Google Scholar 

  92. Su H., Wang X. 2010. The ubiquitin-proteasome system in cardiac proteinopathy: A quality control perspective. Cardiovasc. Res. 85, 253–262.

    Article  PubMed  CAS  Google Scholar 

  93. Guo P.C., Zhou Y.Y., Ma X.X., Li W.F. 2010. Structure of Hsp33/YOR391Cp from the yeast Saccharomyces cerevisiae. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66, 1557–1561.

    Article  PubMed  CAS  Google Scholar 

  94. Chai Y., Koppenhafer S.L., Bonini N.M., Paulson H.L. 1999. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci. 19, 10338–10347.

    PubMed  CAS  Google Scholar 

  95. McNaught K.S., Shashidharan P., Perl D.P., et al. 2002. Aggresome-related biogenesis of Lewy bodies. Eur. J. Neurosci. 16, 2136–2148.

    Article  PubMed  Google Scholar 

  96. Wacker J.L., Huang S.Y., Steele A.D., et al. 2009. Loss of Hsp70 exacerbates pathogenesis but not levels of fibrillar aggregates in a mouse model of Huntington’s disease. J. Neurosci. 29, 9104–9114.

    Article  PubMed  CAS  Google Scholar 

  97. Lehman N.L. 2009. The ubiquitin proteasome system in neuropathology. Acta Neuropathol. 118, 329–347.

    Article  PubMed  CAS  Google Scholar 

  98. Shadrina M.I., Semenova E.V., Slominsky P.A., et al. 2007. Effective quantitative real-time polymerase chain reaction analysis of the parkin gene (PARK2) exon 1-12 dosage. BMC Med. Genet. 8, 6.

    Article  PubMed  CAS  Google Scholar 

  99. Hardy J., Lewis P., Revesz T., et al. 2009. The genetics of Parkinson’s syndromes: A critical review. Curr. Opin. Genet. Dev. 19, 254–265.

    Article  PubMed  CAS  Google Scholar 

  100. Bedford L., Hay D., Devoy A., et al. 2008. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J. Neurosci. 28, 8189–8198.

    Article  PubMed  CAS  Google Scholar 

  101. Komatsu M., Waguri S., Chiba T., et al. 2006. Loss of autophagy in the central nervous system causes neuro-degeneration in mice. Nature. 441, 880–884.

    Article  PubMed  CAS  Google Scholar 

  102. Pickford F., Masliah E., Britschgi M., et al. 2008. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118, 2190–2199.

    PubMed  CAS  Google Scholar 

  103. Hara T., Nakamura K., Matsui M., et al. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 441, 885–889.

    Article  PubMed  CAS  Google Scholar 

  104. Mijaljica D., Prescott M., Devenish R.J. 2007. Different fates of mitochondria: Alternative ways for degradation? Autophagy. 3, 4–9.

    PubMed  CAS  Google Scholar 

  105. Rusten T.E., Filimonenko M., Rodahl L.M., et al. 2008. ESCRTing autophagic clearance of aggregating proteins. Autophagy. 4(2), 233–236.

    CAS  Google Scholar 

  106. Lee S.J., Kim S.J., Kim I.K., et al. 2003. Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain. J. Biol. Chem. 278, 44552–44559.

    Article  PubMed  CAS  Google Scholar 

  107. Braak H., Alafuzoff I., Arzberger T., et al. 2006. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404.

    Article  PubMed  Google Scholar 

  108. Ninkina N., Peters O., Millership S., et al. 2009. Gamma-synucleinopathy: Neurodegeneration associated with overexpression of the mouse protein. Hum. Mol. Genet. 18, 1779–1794.

    Article  PubMed  CAS  Google Scholar 

  109. Goedert M., Clavaguera F., Tolnay M. 2010. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci. 33, 317–325.

    Article  PubMed  CAS  Google Scholar 

  110. Khachaturian Z.S., Snyder P.J., Doody R. 2009. A roadmap for the prevention of dementia II: Leon Thal Symposium 2008. Alzheimer’s Dement. 5, 85–92.

    Article  Google Scholar 

  111. Smith C.U. 2009. Chapter 24. The coming of molecular biology and its impact on clinical neurology. Handb. Clin. Neurol. 95, 361–372.

    Article  Google Scholar 

  112. Bachurin S.O., Ustyugov A.A., Peters O., Shelkovnikova T.A., Buchman V.L., Ninkina N.N. 2009. Hindering of proteinopathy-induced neurodegeneration as a new mechanism of action for neuroprotectors and cognition enhancing compounds. Doklady Biochem. Biophys. 428, 235–238.

    Article  CAS  Google Scholar 

  113. Yamashita M., Nonaka T., Arai T., et al. 2009. Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Lett. 583, 2419–2424.

    Article  PubMed  CAS  Google Scholar 

  114. Menzies F.M., Rubinsztein D.C. 2010. Broadening the therapeutic scope for rapamycin treatment. Autophagy. 6, 286–287.

    Article  PubMed  CAS  Google Scholar 

  115. Gervais F., Paquette J., Morissette C., et al. 2007. Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol. Aging. 28, 537–547.

    Article  PubMed  CAS  Google Scholar 

  116. Shemesh O.A., Spira M.E. 2011. Rescue of neurons from undergoing hallmark tau-induced Alzheimer’s disease cell pathologies by the antimitotic drug paclitaxel. Neurobiol. Dis. 43, 163–175.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Bachurin.

Additional information

Original Russian Text © T.A. Shelkovnikova, A.A. Kulikova, Ph.O. Tsvetkov, O. Peters, S.O. Bachurin, V.L. Buchman, N.N. Ninkina, 2012, published in Molekulyarnaya Biologiya, 2012, Vol. 46, No. 3, pp. 402–415.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelkovnikova, T.A., Kulikova, A.A., Tsvetkov, P.O. et al. Proteinopathies, neurodegenerative disorders with protein aggregation-based pathology. Mol Biol 46, 362–374 (2012). https://doi.org/10.1134/S0026893312020161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893312020161

Keywords

Navigation