Skip to main content
Log in

Electrochemical Detection of Barrier Layer Removal for Preparation of Anodic Alumina Membranes with High Permeance and Mechanical Stability

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A procedure for the controlled barrier layer removal is suggested in this work which provides the preparation of anodic alumina membrane with specified pore diameter and permeance. Optimal conditions for barrier layer removal which give membranes with high gas permeance of 400 m3/(m2 atm h) by nitrogen and breaking strength of up to 440 ± 40 MPa, which is allowable for their operation in baromembrane processes, are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bengoughand, G.D. and Stuart, J.M., UK Patent 223994, 1923.

    Google Scholar 

  2. Bozhko, P.V., Korshunov, A.V., Il’in, A.P., Lotkov, A.I., and Ratochka, I.V., Reactivity of submicrocrystalline titanium: II. Electrochemical properties and corrosion stability in sulfuric acid solutions, Inorg. Mater.: Appl. Res., 2013, vol. 4, no. 2, pp. 85–91.

    Article  Google Scholar 

  3. Masuda, H. and Fukuda, K., Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina, Science, 1995, vol. 268, no. 9, pp. 1466–1468.

    Article  CAS  Google Scholar 

  4. Petukhov, D.I., Napolskii, K.S., and Eliseev, A.A., Permeability of anodic alumina membranes with branched channels, Nanotechnology, 2012, vol. 23, no. 33, art. 335601.

    Google Scholar 

  5. Roslyakov, I.V., Kuratova, N.S., Koshkodaev, D.S., Merino, D.H., Lukashin, A.V., and Napolskii, K.S., Morphology of anodic alumina films obtained by hard anodization: Influence of the rate of anodization voltage increase, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2016, vol. 10, no. 1, pp. 191–197.

    Article  CAS  Google Scholar 

  6. Santos, A., Montero-Moreno, J.M., Bachmann, J., Nielsch, K., Formenten, P., Ferre-Borrull, J., Pallares, J., and Marsal, L.F., Understanding pore rearrangement during mild to hard transition in bilayered porous anodic alumina membranes, ACS Appl. Mater. Interfaces, 2011, vol. 3, no. 6, pp. 1925–1932.

    Article  CAS  Google Scholar 

  7. Filyak, M.M. and Kanygina, O.N., Microgeometry of the surface of porous anodic aluminum oxide, Materialovedenie, 2013, no. 2, pp. 21–24.

    Google Scholar 

  8. Roslyakov, I.V., Napol’skii, K.S., Evdokimov, P.V., Napol’skii, F.S., Dunaev, A.V., Eliseev, A.A., Lukashin, A.V., and Tret’yakov, Yu.D., Thermal properties of anodic aluminum oxide membranes, Nanosist.: Fiz., Khim., Matem., 2013, vol. 4, no. 1, pp. 120–129.

    Google Scholar 

  9. Napolskii, K.S., Roslyakov, I.V., Eliseev, A.A., Petukhov, D.I., Lukashin, A.V., Chen, S.F., Liu, C.P., and Tsirlina, G.A., Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential, Electrochim. Acta. 2011, vol. 56, no. 5, pp. 2378–2384.

    Article  CAS  Google Scholar 

  10. Bedin, S.A., Rybalko, O.G., Polyakov, N.B., Zagorskii, D.L., Razumovskaya, A.V., Bondarenko, G.G., and Oleinikov, V.A., Metal micro-and nanowires fabricated by matrix synthesis and their application in mass spectrometry, Inorg. Mater.: Appl. Res., 2010, vol. 1, no. 4, pp. 359–364.

    Article  Google Scholar 

  11. Lee, K.P., Leese, H., and Mattia, D., Water flow enhancement in hydrophilic nanochannels, Nanoscale, 2012, vol. 4, no. 8, pp. 2621–2627.

    Article  CAS  Google Scholar 

  12. Lee, K.P. and Mattia, D., Monolithic nanoporous alumina membranes for ultrafiltration applications: characterization, selectivity-permeability analysis and fouling studies, J. Membr. Sci., 2013, vol. 435, pp. 52–61.

    Article  CAS  Google Scholar 

  13. Petukhov, D.I., Napolskii, K.S., Berekchiyan, M.V., Lebedev, A.G., and Eliseev, A.A., Comparative study of structure and permeability of porous oxide films on aluminum obtained by single-and two-step anodization, ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 16, pp. 7819–7824.

    Article  CAS  Google Scholar 

  14. Petukhov, D.I., Lukashin, A.V., Pyatkov, E.S., Surtaev, V.N., and Eliseev, A.A., Removal of heavy hydrocarbons from petroleum gas using capillary condensation on microporous membranes, Nauchno-Tekh. Vestn. OAO NK Rosneft’, 2015, no. 41, pp. 47–51.

    Google Scholar 

  15. Petukhov, D.I. and Eliseev, A.A., Gas permeation through nanoporous membranes in the transitional flow region, Nanotechnology, 2016, vol. 27, no. 8, art. 085707.

    Google Scholar 

  16. Petukhov, D.I., Berekchiian, M.V., Pyatkov, E.S., Solntsev, K.A., and Eliseev, A.A., Experimental and theoretical study of enhanced vapor transport through nanochannels of anodic alumina membranes in capillary condensation regime, J. Phys. Chem. C, 2016, vol. 120, no. 20, pp. 10982–10990.

    Article  CAS  Google Scholar 

  17. Chernova, E., Petukhov, D., Boytsova, O., Alentiev, A., Budd, P., Yampolskii, Y., and Eliseev, A., Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes, Sci. Rep., 2016, vol. 6, art. 31183.

  18. Eliseev, A.A., Petukhov, D.I., Buldakov, D.A., Ivanov, R.P., Napolskii, K.S., Lukashin, A.V., and Tret’yakov, Y.D., Morphological modification of the surface of polymers by the replication of the structure of anodic aluminum oxide, JETP Lett., 2010, vol. 92, no. 7, pp. 453–456.

    Article  CAS  Google Scholar 

  19. Boytsova, O., Klimenko, A., Lebedev, V., Lukashin, A., and Eliseev, A., Nanomechanical humidity detection through porous alumina cantilevers, Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1332–1337.

    Article  CAS  Google Scholar 

  20. Wang, K.X., Wang, Y.G., Wang, Y.R., Hosono, E., and Zhou, H.S., Mesoporous carbon nanotibers for supercapacitor application, J. Phys. Chem. C, 2009, vol. 113, no. 3, pp. 1093–1097.

    Article  CAS  Google Scholar 

  21. Wernick, S., Pinner, R., and Sheasby, P.G., The Surface Treatment and Finishing of Aluminum and Its Alloys, West Conshohocken, PA: ASTM Int., 1987.

    Google Scholar 

  22. Brevnov, D.A., Rao, G.V.R., Lopez, G.P., and Atanassov, P.B., Dynamics and temperature dependence of etching processes of porous and barrier aluminum oxide layers, Electrochim. Acta, 2004, vol. 49, no. 15, pp. 2487–2494.

    Article  CAS  Google Scholar 

  23. Han, C.Y., Willing, G.A., Xiao, Z.L., and Wang, H.H., Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching, Langmuir, 2007, vol. 23, no. 3, pp. 1564–1568.

    Article  CAS  Google Scholar 

  24. Gong, J., Butler, W.H., and Zangari, G., Tailoring morphology in free-standing anodic aluminium oxide: control of barrier layer opening down to the sub-10 nm diameter, Nanoscale, 2010, vol. 2, no. 5, pp. 778–785.

    Article  CAS  Google Scholar 

  25. Liang, J.Y., Chik, H., Yin, A.J., and Xu, J., Twodimensional lateral superlattices of nanostructures: nonlithographic formation by anodic membrane template, J. Appl. Phys., 2002, vol. 91, pp. 2544–2546.

    Article  CAS  Google Scholar 

  26. Lira, H.D.L. and Paterson, R., New and modified anodic alumina membranes: Part III. Preparation and characterization by gas diffusion of 5 nm pore size anodic alumina membranes, J. Membr. Sci., 2002, vol. 206, pp. 375–387.

    Article  CAS  Google Scholar 

  27. Han, H., Park, S.J., Jang, J.S., Ryu, H., Kim, K.J., Baik, S., and Lee, W., In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide, ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 8, pp. 3441–3448.

    Article  CAS  Google Scholar 

  28. Lillo, M. and Losic, D., Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology, J. Membr. Sci., 2009, vol. 327, pp. 11–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Petukhov.

Additional information

Original Russian Text © E.S. Pyatkov, M.V. Berekchiyan, A.A. Yeliseyev, A.V. Lukashin, D.I. Petukhov, K.A. Solntsev, 2017, published in Materialovedenie, 2017, No. 6, pp. 25–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyatkov, E.S., Berekchiyan, M.V., Yeliseyev, A.A. et al. Electrochemical Detection of Barrier Layer Removal for Preparation of Anodic Alumina Membranes with High Permeance and Mechanical Stability. Inorg. Mater. Appl. Res. 9, 82–87 (2018). https://doi.org/10.1134/S2075113318010227

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318010227

Keywords

Navigation