Skip to main content
Log in

Spectrochemical properties of some explosives in the vapor state

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The FTIR spectra of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and pentaerythritol tetranitrate (PETN) in the vapor phase over wide frequency (3500–500 cm−1) and temperature ranges (293–383 K) is experimentally studied and the assignment of the observed vibrational bands is performed. To clarify the nature of the physicochemical processes that occur during the heating and evaporation of RDX and PETN and to detect and identify their characteristic components, the mass spectra and sub-THz spectra of these explosives are studied. To obtain spectroscopic information, special experimental techniques for recording of IR, sub-THz, and mass spectra of vapors of explosives and for preparation of high-purity RDX and PETN samples (with a main substance content of >99.7%) are developed based on modern methods of synthesis and purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Moore, Rev. Sci. Instrum. 75(8), 9 (2004).

    Article  Google Scholar 

  2. S. Yelleti, E. Wilkins, R. A. Sitdikov, et al., in Sensors for Chemical and Biological Applications, Ed. by M. K. Ram and V. R. Bhethanabotla (CRC, New York, 2010), p. 277.

  3. B. M. Gruznov, V. G. Filonenko, M. H. Baldin, and A. T. Shishmarev, Ros. Khim. Zhurn. (Zh. Ros. Khim. Obshch. Mendeleeva) 45(4), 100 (2002).

    Google Scholar 

  4. G. A. Eiceman and Z. Karpas, Ion Mobility Spectrometry, 2nd ed. (CRC Press, New York, 2005), p. 249.

    Book  Google Scholar 

  5. C. K. N. Patel, Eur. Phys. J. Spec. Top. 153(1), 1 (2008).

    Article  Google Scholar 

  6. A. I. Karapuzikov, Sh. Sh. Nabiev, A. I. Nadezhdinskii, and Yu. N. Ponomarev, Atmos. Ocean. Opt. 24, 133 (2011).

    Article  CAS  Google Scholar 

  7. Terahertz Frequency Detection and Identification of Materials and Objects, Ed. by R. E. Miles and X.-C. Zhang (Springer, Berlin, Heidelberg, 2007), p. 251.

    Book  Google Scholar 

  8. M. Leahy-Hoppa, M. Fitch, and R. Osiander, Anal. Bioanal. Chem. 395, 247 (2009).

    Article  CAS  Google Scholar 

  9. V. L. Vaks, A. B. Volodin, Sh. Sh. Nabiev, et al., Vopr. Obor. Tekhn, Ser. 16. Tekh. Sredstva Protivod. Terrorizmu, Nos. 11–12, 23 (2009).

    Google Scholar 

  10. V. L. Vaks, E. G. Domracheva, Sh. Sh. Nabiev, et al., in Proceedings of the 6th International Scientific-Practical Conference on Technical Means of Countering Terrorist and Criminal Explosions (St.-Petersburg, 2010), p. 38.

    Google Scholar 

  11. B. T. Kenna, F. J. Conrad, and D. W. Hannum, in Proceedings of the 1st International Symposium on Explosion Detection Technology, Ed. by S. M. Khan (FAA Atlantic City, NJ, 1991), p. 510.

  12. K. L. McNesby and R. A. Pesce-Rodriguez, in Handbook of Vibrational Spectroscopy, Ed. by J. M. Chalmers and P. R. Griffiths (Wiley, West Sussex, UK, 2002), p. 3152.

  13. D. G. Allis, J. A. Zeitler, P. F. Taday, and T. M. Korter, Chem. Phys. Lett. 463(2), 84 (2008).

    Article  CAS  Google Scholar 

  14. A. Pereverzev and T. D. Sewell, J. Chem. Phys. 134, 244502 (2011).

    Article  Google Scholar 

  15. E. Yu. Orlova, Chemistry and Technology of Brisant Explosives (Khimiya, Leningrad, 1981) [in Russian].

    Google Scholar 

  16. Explosives, Ed. by R. Meyer and J. Köller, 6th ed. (Wiley-VCH, New York, 2007), p. 279.

    Google Scholar 

  17. E. Yu. Orlova, G. M. Shutov, V. F. Zhilin, and V. L. Zbarskii, Laboratory Manual for Preparation of Nitrocompounds (Mosk. Khim. Tekhnol. Inst. Mendeleeva, Moscow, 1969) [in Russian].

    Google Scholar 

  18. A. E. van der Heijden and R. H. Bouma, Cryst. Growth Des. 4, 999 (2004).

    Article  Google Scholar 

  19. J. M. Phelan and S. W. Webb, Sandia Rep. No. SAND97-1426 (Albuquerque, NM, 1997).

    Google Scholar 

  20. B. C. Dionne, D. P. Rounbehler, E. K. Achter, et al., J. Energ. Mater 4, 447 (1986).

    Article  CAS  Google Scholar 

  21. G. A. Eiceman, D. Preston, G. Tiano, et al., Talanta 45(1), 57 (1997).

    Article  CAS  Google Scholar 

  22. V. L. Vaks, A. B. Brailovsky, and V. V. Khodos, Infrared Millimeter Waves 20, 883 (1999).

    Article  Google Scholar 

  23. V. L. Vaks, A. H. Panin, C. A. Basov, et al., Izv. Vyssh. Uchebn. Zaved., Radiofiz. 52, 569 (2009).

    CAS  Google Scholar 

  24. Sh. Sh. Nabiev, V. L. Vaks, E. G. Domracheva, et al., Atmos. Ocean. Opt. 24, 402 (2011).

    Article  CAS  Google Scholar 

  25. V. Vaks, Sh. Nabiev, E. Sobakinskaya, and D. Stavrovskii, in Proceedings of the 35th International Conference on Infrared, Millimeter and THz Waves (IRMMW-THz) (Roma, 2010), p. Fr-F1.5.

    Google Scholar 

  26. G. R. Miller and A. N. Garroway, Naval Research Lab. Rep. No. NRL/MR/6120-01-8585 (Washington, DC, 2001).

    Google Scholar 

  27. J. Akhavan, The Chemistry of Explosives (The Royal Society of Chemistry, Cambridge, 2004), p. 37.

    Google Scholar 

  28. A. Osmont, L. Catoire, I. Gökalp, and V. Yang, Combust. Flame 151, 262 (2007).

    Article  CAS  Google Scholar 

  29. V. I. Pepekin and C. A. Gubin, Combust. Explos., Shock Waves 43, 84 (2007).

    Article  Google Scholar 

  30. V. L. Zbarskii and V. F. Zhilin, Toluene and Its Nitroderivatives (URSS, Moscow, 2000), p. 208 [in Russian].

    Google Scholar 

  31. N. I. Sadova and L. V. Vilkov, Usp. Khim. 51, 153 (1982).

    Article  CAS  Google Scholar 

  32. R. J. Karpowicz and T. B. Brill, J. Phys. Chem. 88, 348 (1984).

    Article  CAS  Google Scholar 

  33. F. Pristera, M. Halik, A. Castelli, and W. Fredericks, Anal. Chem. 32, 495 (1960).

    Article  CAS  Google Scholar 

  34. J. A. Janni, B. D. Gilbert, R. W. Field, and J. I. Steinfeld, Spectrochim. Acta A 53, 1375 (1997).

    Article  Google Scholar 

  35. A. Banas, K. Banas, M. Bahou, et al., Vibration. Spectrosc. 51, 168 (2009).

    Article  CAS  Google Scholar 

  36. Y. A. Gruzdkov and Y. M. Gupta, J. Phys. Chem. A 105, 6197 (2001).

    Article  CAS  Google Scholar 

  37. R. Infante-Castillo and S. P. Hernandez-Rivera, Proc. SPIE 5461, 62012 (2006).

    Article  Google Scholar 

  38. B. M. Rice and P. D. Chabalowski, J. Phys. Chem. A 101, 8720 (1997).

    Article  CAS  Google Scholar 

  39. S. G. Boyd and K. J. Boyd, J. Chem. Phys. 129, 134502 (2008).

    Article  Google Scholar 

  40. T. Vladimiroff and B. M. Rice, J. Phys. Chem. A 106, 10437 (2002).

    Article  CAS  Google Scholar 

  41. R. W. Molt, Jr., T. Watson, Jr., V. F. Lotrich, and R. J. Bartlett, J. Phys. Chem. A 115, 884 (2011).

    Article  CAS  Google Scholar 

  42. R. Infante-Castillo and S. P. Hernandez-Rivera, Proc. SPIE 6538, 653825 (2007).

    Article  Google Scholar 

  43. J. Akhavan, Spectrochim. Acta A 47, 1247 (1991).

    Article  Google Scholar 

  44. R. Infante-Castillo, L. C. Pacheco-Londoco, and S. P. Hernandez-Rivera, J. Mol. Struct. 970, 51 (2010).

    Article  CAS  Google Scholar 

  45. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Powders (Nauka, Moscow, 1996), p. 59 [in Russian].

    Google Scholar 

  46. J. Coates, in Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (Wiley, Chichester, 2000), p. 10815.

  47. P. S. Kalsi, Spectroscopy of Organic Compounds, 6th ed. (New Age, New York, London, 2004), p. 65.

    Google Scholar 

  48. Y. Matsuda, K. Ohta, N. Mikami, and A. Fujii, Chem. Phys. Lett. 471, 50 (2009).

    Article  CAS  Google Scholar 

  49. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Pt. A: Theory and Applications in Inorganic Chemistry, 6th ed. (Wiley Interscience, New Yrok, 2009), p. 162.

    Google Scholar 

  50. K. A. Velizhanin, S. Kilina, T. D. Sewell, and A. Piryatinski, J. Phys. Chem. B 112, 13252 (2008).

    Article  CAS  Google Scholar 

  51. D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy (Dover, New York, 1989), p. 190.

    Google Scholar 

  52. X. Gong, H. Xiao, and P. Gao, Chin. J. Org. Chem. 17, 513 (1997).

    CAS  Google Scholar 

  53. A. B. Robertson, J. Soc. Chem. Ind. 67, 221 (1948).

    Article  CAS  Google Scholar 

  54. M. A. Hiskey, K. R. Brower, and J. Oxley, J. Phys. Chem. 95, 3844 (1991).

    Article  Google Scholar 

  55. J. A. Janni, Doctoral Thesis (Massachusetts Institute of Technology, Massachusetts, 1998).

  56. Sh. Sh. Nabiev, D. B. Stavrovskii, V. L. Vaks, et al., Russ. J. Phys. Chem. A 85, 1404 (2011).

    Article  CAS  Google Scholar 

  57. R. L. Poynter, et al., J. Quantum. Spectrosc. Rad. Transfer 60, 883 (1998).

    Article  Google Scholar 

  58. N. N. Almoayed and M. N. Afsar, in Proceedings of the 32nd International Conference on Infrared, Millimeter and THz Waves (IRMMW-THz) (Cardiff, 2007), p. 178.

    Google Scholar 

  59. J. Kimura, Propellants, Explosives, Pyrotech. 14, 89 (1989).

    Article  CAS  Google Scholar 

  60. D. Chambers, C. Brackett, and D. O. Sparkman, Tech. Rep. No. UCRL-ID-148956 (Lawrence Livermore National Laboratory, Livermore, 2002), p. 12.

    Google Scholar 

  61. V. N. German, S. E. Grebennikova, L. Y. Kornilova, et al., in Proceedings of the 12th International Detonation Symposium, San Diego, California, USA, Aug. 11–16, 2002 (San Diego, CA, 2002), p. 538.

    Google Scholar 

  62. G. D. Miller, L. D. Hawsi, and R. H. Dinegar, in Proceedings of the 19th International Symposium on Combustion, Haifa, Israel, Aug. 8–13, 1982 (1982), p. 701.

    Google Scholar 

  63. M. F. Foltz, Lawrence Livermore National Lab. Tech. Rep. No. LLNL-TR-415057 (Livermore, 2009), p. 9.

    Google Scholar 

  64. J. M. Rosen, J. Chem. Eng. Data 14, 120 (1969).

    Article  CAS  Google Scholar 

  65. T. B. Brill, P. E. Gongwer, and G. K. Williams, J. Phys. Chem. 98, 12242 (1994).

    Article  CAS  Google Scholar 

  66. G. T. Long, S. Vyazovkin, B. A. Brems, and C. A. Wight, J. Phys. Chem. B 104, 2570 (2000).

    Article  CAS  Google Scholar 

  67. T. R. Botcher and C. A. Wight, J. Phys. Chem. 98, 5441 (1994).

    Article  CAS  Google Scholar 

  68. D. Chakraborty, R. P. Muller, S. Dasgupta, and W. A. Goddard, J. Phys. Chem. A 104, 2261 (2000).

    Article  CAS  Google Scholar 

  69. C. A. Wight and T. R. Botcher, J. Am. Chem. Soc. 114, 8303 (1992).

    Article  CAS  Google Scholar 

  70. Committee of the Review Existing and Potential Standoff Explosives Detection Techniques, Existing and Potential Standoff Explosives Detection Techniques (National Academic Science, Washington DC, 2004), p. 35. http://www.nap.edu

  71. Convention on the Marking of Plastic Explosives for the Purpose of their Detection. http://www.un.org mssian/documeri/convents/markconv.htm

  72. National Research Council, Containing the Threat from Illegal Bombings (National Academies, New York, 1998).

    Google Scholar 

  73. Counterterrorist Detection Techniques of Explosives, Ed. by J. Yinon (Elsevier, New York, 2007), p. 109.

    Book  Google Scholar 

  74. D. P. Cutler and A. K. Brown, J. Hazard. Mater 46, 169 (1996).

    Article  CAS  Google Scholar 

  75. D. E. G. Jones, P. D. Lightfoot, R. C. Fouchard, and Q. S. M. Kwok, Thermochim. Acta 388, 159 (2002).

    Article  CAS  Google Scholar 

  76. Aspects of Explosives Detection, Ed. by M. Marshall (Elsevier Science, New York, London, 2008), p. 11.

    Google Scholar 

  77. V. Vaks, A. Illuk, Sh. Nabiev, et al., in Proceedings of the International Workshop on Terahertz and Mid Infrared Radiation: Basic Research and Practical Applications, TERA-MIR 2009 (Turun, Marmaris, Turkey, 2009), p. 91.

    Book  Google Scholar 

  78. A. G. Berezin, I. E. Vyazov, A. I. Nadezhdinskii, et al., in Proceedings of the Workshop of Analytics in Russia (Moscow, 2010), p. 42.

    Google Scholar 

  79. G. I. Skubnevskaya and G. G. Dul’tseva, Atmospheric Pollution with Formaldehyde, Ed. by N. M. Bazhin (GPNTB SO RAN, Novosibirsk, 1994) [in Russian].

  80. G. Yu. Grigor’ev, A. I. Karapuzikov, Sh. Sh. Nabiev, et al., Vopr. Obor. Tekhn., Ser. 16: Tekh. Sredstva Protivod. Terrorizmu, Nos. 1–2, 86 (2009).

    Google Scholar 

  81. A. I. Nadezhdinskii, Ya. Ya. Ponurovskii, and D. B. Stavrovskii, Appl. Phys. B 90, 361 (2008).

    Article  CAS  Google Scholar 

  82. A. Fried, J. Crawford, J. Olson, et al., J. Geophys. Res. 108, 8798 (2003).

    Article  Google Scholar 

  83. The Remote Sensing of Tropospheric Composition from Space, Eds. by J. Burrows, U. Piatt, and P. Borrell (Springer, Heidelberg, 2011), p. 315.

    Book  Google Scholar 

  84. V. Kapitanov, A. Karapuzikov, Sh. Nabiev, et al., in Proceedings of the 8th All-Russia Conference on Analysis of Environmental Objects, Ecoanalytics-2011 (Arkhangel’sk, 2011), p. 130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Sh. Nabiev.

Additional information

Original Russian Text © Sh.Sh. Nabiev, D.B. Stavrovskii, L.A. Palkina, V.L. Zbarskii, N.V. Yudin, V.L. Vaks, E.G. Domracheva, M.B. Chernyaeva, 2013, published in Khimicheskaya Fizika, 2013, Vol. 32, No. 5, pp. 13–31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabiev, S.S., Stavrovskii, D.B., Palkina, L.A. et al. Spectrochemical properties of some explosives in the vapor state. Russ. J. Phys. Chem. B 7, 203–219 (2013). https://doi.org/10.1134/S1990793113050084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793113050084

Keywords

Navigation