Skip to main content
Log in

Analysis of the dinoflagellate Prorocentrum minimum transcriptome: Identifying the members of the voltage-gated cation channel superfamily

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Dinoflagellates are an ecologically important group of aquatic single-cell eukaryotes. At present, relatively little is known about physiological features that determine the role of these protists in natural ecosystems. The lack of knowledge on the diversity, structure, and functioning of dinoflagellate ion channels significantly hampers the interpretation of physiological reactions and adaptations in these microorganisms. We performed the analysis of the translated transcriptome databases that belong to two strains of the dinoflagellate Prorocentrum minimum in order to identify the members of the voltage-gated cation channel superfamily. We found out that transcriptomes of these potentially toxic microorganisms contained the homologues of: 1—inwardly rectifying potassium channels (Kir), 2—voltage-gated potassium channels (Kv), 3—calciumactivated potassium channels (KCa), 4—cyclic nucleotide-gated channels (EAG and HCN/CNG), 5—TRPV and TRPP channels, 6—two-pore calcium channels TPC, 7—voltage-gated sodium (Nav) and calcium (Cav) channels, 8—and voltage-gated proton channels (Hv).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a. a.:

amino acid residues

Ank:

ankyrin domain

BK:

large conductance calcium-activated potassium channel

Cav :

Cav—voltage-gated calcium channel

CNBD:

cyclic nucleotide-binding domain

CNG:

cyclic nucleotide-gated channel

EAG:

ether-a-go-go like channel

HCN:

hyperpo-larization-activated cyclic nucleotide-gated channel

K2P :

potassium leak channel

Kir :

inwardly rectifying potassium channel

Kv :

voltage-gated potassium channel

NALCN:

sodium leak channel

Nav :

voltage-gated sodium channel

P-loop:

pore loop

VSD:

voltage-sensitive domain

References

  • Adl, S.M., Simpson, A.G.B., Lane, C.E., Lukes, J., Bass, D., et al., The revised classification of eukaryotes, J. Eukaryot. Microbiol., 2012, vol. 59, pp. 429–493.

    Article  PubMed Central  PubMed  Google Scholar 

  • Arias-Darraz, L., Cabezas, D., Colenso, C.K., et al., A transient receptor potential ion channel in Chlamydomonas shares key features with sensory transduction-associated TRP channels in mammals, Plant Cell Online. C. tpc. 114.131862

  • Cai, X. and Clapham, D.E., Ancestral Ca2+ signaling machinery in early animal and fungal evolution, Mol. Bio. Evol., 2012, vol. 29, pp. 91–100.

    Article  Google Scholar 

  • Cai, X., Ancient origin of four-domain voltage-gated Na+ channels predates the divergence of animals and fungi, J. Membrane Biol., 2012, vol. 245, pp. 117–123.

    Article  CAS  Google Scholar 

  • Cembella, A.D., Chemical ecology of eukaryotic microalgae in marine ecosystems, Phycologia, 2003, vol. 42, pp. 420–447.

    Article  Google Scholar 

  • Craven, K.B. and Zagotta, W.N., CNG and HCN channels: two peas, one pod, Annu. Rev. Physiol., 2006, vol. 68, pp. 375–401.

    Article  CAS  PubMed  Google Scholar 

  • DeCoursey, T.E., Voltage-gated proton channels, Cell. Mol. Life Sci., 2008, vol. 65, pp. 2554–2573.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eckert, R. and Sibaoka, T., The flash-triggering action potential of the luminescent dinoflagellate Noctiluca, J. Gen. Physiol., 1968, vol. 52, pp. 258–282.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Figueroa, R.I., Cuadrado, A., Stüken, A., Rodríguez, F., and Fraga, S., Ribosomal DNA organization patterns within the dinoflagellate genus Alexandrium as revealed by FISH: life cycle and evolutionary implications, Protist, 2014, vol. 165, pp. 343–363.

    Article  CAS  PubMed  Google Scholar 

  • Fujiu, K., Nakayama, Y., Iida, H., Sokabe, M., and Yoshimura, K., Mechanoreception in motile flagella of Chlamydomonas, Nat. Cell. Biol., 2011, vol. 13, pp. 630–632.

    Article  CAS  PubMed  Google Scholar 

  • Hackett, J.D., Anderson, D.M., Erdner, D.L., and Bhattacharya, D., Dinoflagellates: a remarkable evolutionary experiment, Am. J. Bot., 2004, vol. 91, pp. 1523–1534.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids. Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  • Hille, B., Ion Channels of Excitable Membranes, 3rd ed., Sunderland, MA, USA: Sinauer Associates, Inc., 2001.

    Google Scholar 

  • Huang, K, Diener, D.R., Mitchell, A., Pazour, G.J., Witman, G.B., and Rosenbaum, J.L., Function and dynamics PKD2 in Chlamydomonas reinhardtii flagella, J. Cell Biol., 2007, vol. 179, pp. 501–514.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jegla, T.J., Zmasek, C.M., Batalov, S., and Nayak, S.K., Evolution of the human ion channel set, Combinat. Chem. High Throughput Screening., 2009, vol. 12, pp. 2–23.

    Article  CAS  Google Scholar 

  • Kamykowski, D., Milligan, E.J., and Reed, R.E., Relationships between geotaxis/phototaxis and diel migration in autotrophic dinoflagellates, J. Plankton Res., 1998, vol. 20, no. 9, pp. 1781–1796.

    Article  Google Scholar 

  • Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, pp. 772–780.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keeling, P.J., Burki, F., Wilcox, H.M., Allam, B., et al., The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing, PLoS Biol., 2014, vol. 12, p. e1001889.

    Article  PubMed Central  PubMed  Google Scholar 

  • Krutetskaya, Z.I., Lebedev, O.E., and Kurilova, L.S., Mekhanizmy vnutrikletochnoi signalizatsii (Mechanisms of Intracellular Signaling), St Petersburg: Izd. SPbGU, 2003.

    Google Scholar 

  • Li, M., Yu, Y., and Yang, J., Structural biology of TRP channels, in Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, Dordrecht: Springer, 2011, vol. 704, pp. 1–23.

    Chapter  Google Scholar 

  • Liebeskind, B.J., Hillis, D.M., and Zakon, H.H., Evolution of sodium channels predates the origin of nervous systems in animals, Proc. Nat. Acad. Sci. USA, 2011, vol. 108, pp. 9154–9159.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liebeskind, B.J., Hillis, D.M., and Zakon, H.H., Phylogeny unites animal sodium leak channels with fungal calcium channels in an ancient voltage-insensitive clade, Mol. Biol. Evol., 2012, vol. 29, pp. 3613–3616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinac, B., Saimi, Y., and Kung, C., Ion channels in microbes, Physiol. Rev., 2008, vol. 88, pp. 1449–1490.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molleman, A., Patch-Clamping: an Introductory Guide to Patch Clamp Electrophysiology, Chichester, West Sussex, UK: John Willey and Sons, Ltd., 2003.

    Google Scholar 

  • Morrill, L.C. and Loeblich, A.R., III, Ultrastructure of the dinoflagellate Amphiesma, Int. Rev. Cytol., 1983, vol. 82, pp. 151–180.

    Article  CAS  PubMed  Google Scholar 

  • Oami, K., Naitoh, Y., and Sibaoka, T., Distribution of ion channels in the membrane of the dinoflagellate Noctiluca miliaris, J. Exp. Biol., 1990, vol. 150, pp. 473–478.

    Google Scholar 

  • Okolodkov, Yu.B., Dinoflagellata, in Protisty: rukovodstvo po zoologii (Protists: Guide Book in Zoology), St Petersburg: Tov. Nauch. Izd. KMK, 2011, vol. 3, pp. 7–94.

    Google Scholar 

  • Okonechnikov, K., Golosova, O., Fursov, M., and the UGENE team, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, pp. 1166–1167.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, W.R., An introduction to sequence similarity (“homology”) searching, Curr. Protoc. Bioinform., 2013. DOI: 10.1002/0471250953.bi0301s42

    Google Scholar 

  • Pozdnyakov, I. and Skarlato, S., Dinoflagellate Amphiesma at different stages of the life cycle, Protistology, 2012, vol. 7, pp. 108–115.

    Google Scholar 

  • Pozdnyakov, I., Matantseva, O., Negulyaev, Y., and Skarlato, S., Obtaining spheroplasts of armored dinoflagellates and first single-channel recordings of their ion channels using patch-clamping, Mar. Drugs, 2014, vol. 12, pp. 4743–4755.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raikov, I.B., The dinoflagellate nucleus and chromosomes: mesokaryote concept reconsidered, Acta Protozool., 1995, vol. 34, pp. 239–247.

    Google Scholar 

  • Single-Channel Recording, 2nd ed., Sakmann, B. and Neher, E., Eds., New York, Dordreht, Heildelberg, London: Springer-Science and Business Media., 2009.

  • Smith, S.M.E., Morgan, D., Musset, B., Cherny, V.V., Place, A.R., Hastings, J.W., and DeCoursey, T.E., Voltagegated proton channel in a dinoflagellate, Proc. Nat. Acad. Sci. USA, 2011, vol. 108, pp. 18162–18167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soyer-Gobillard, M.-O., Gillet, B., Geraud, M.-L., and Bhaud, Y., Dinoflagellate chromosome behavior during stages of replication, Int. Microbiol., 1999, vol. 2, pp. 93–102.

    CAS  PubMed  Google Scholar 

  • Taylor, A.R., Charchri, A., Wheeler, G., Goddard, and Brownlee, C., A Voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores, PLoS Biol., 2011, vol. 9, p. e1001085.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vandenberg, J.I., Perry, M.D., Perrin, M.J., Mann, S.A., Ke, Y., and Hill, A.P., hERG K+ channels: structure, function, and clinical significance, Physiol. Rev., 2012, vol. 92, pp. 1393–1478.

    Article  CAS  PubMed  Google Scholar 

  • Yu, F.H., Yarov-Yarovoy, V., Gutman, G.A., and Catterall, W.A., Overview of molecular relationships in the voltagegated ion channel superfamily, Pharmacol. Rev., 2005, vol. 57, pp. 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Zefirov, A.L. and Sidtikova, M.A., Ionnye kanaly vozbudimoi kletki (struktura, funktsiya, patologiya) (Ion Channels of an Excitable Cell (Structure, Function, and Pathology)), Kazan: Art-cafe, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Pozdnyakov.

Additional information

Original Russian Text © I.A. Pozdnyakov, S.O. Skarlato, 2015, published in Tsitologiya, 2015, Vol. 57, No. 7, pp. 533–543.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozdnyakov, I.A., Skarlato, S.O. Analysis of the dinoflagellate Prorocentrum minimum transcriptome: Identifying the members of the voltage-gated cation channel superfamily. Cell Tiss. Biol. 9, 483–492 (2015). https://doi.org/10.1134/S1990519X15060085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15060085

Keywords

Navigation