Skip to main content
Log in

Influence of Loranthus micranthus against STZ-Induced Neurobehavioral Deficits in Diabetic Rats

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Loranthus micranthus (LM) is used in the treatment of diabetes and mental disorders in Nigerian folklore medicine. We studied the short-term memory behavior as well as the activity of acetylcholinesterase, antioxidant status and glycolytic flux in cerebrum and cerebellum of diabetic rats treated with LM extract. Histopathological evaluation was used to assess the level of damage on brain tissue due to diabetes complications. Treatment with LM improved short-term memory behavior, significantly reduced the levels of lipid peroxidation (LPO), increased glutathione (GSH) levels and enhanced the activities of antioxidant enzymes. Activities of glucose metabolism enzymes were augmented while acetylcholinesterase (AChE) activity was reduced by LM treatment compared with the untreated diabetic group. Histopathology evaluation revealed the possible influence of LM in reversing diabetes-induced damage in brain tissue. Further studies are required to accentuate the potentials of LM extract in assuaging diabetes-induced neurological deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kaplan, M., Aviram, M., and Hayek, T., Pharm. Therap., 2012, vol. 136, pp. 175–185.

    Article  CAS  Google Scholar 

  2. Prickaerts, J., Fahrig, T., and Blokland, A., Behav. Brain. Res., 1999, vol. 102, pp. 73–88.

    Article  CAS  PubMed  Google Scholar 

  3. Price, J., Verma, S., and Li, R.K., Heart Fail. Rev., 2003, vol. 8, pp. 213–219.

    Article  PubMed  Google Scholar 

  4. Sharifzadeh, M., Ranjbar, A., Hosseini, A., and Khanavi, M., Iran. J. Pharm. Res., 2017, vol. 16, no. 1, pp. 201–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ebokaiwe, A.P., Ijomone, O.M., Edeh, O.,Oteh, I., and Ebuka, D.E., J. Basic Clin. Physiol. Pharmacol., 2018. https://doi.org/10.1515/jbcpp-2017-0092

  6. Vinayagam, R., and Xu, B., Nutr. Metab., 2015, vol. 12, p. 60.

    Article  CAS  Google Scholar 

  7. Channabasava, G.M., Chandrappa, C.P., and Umashankar, T., J. Diabetes Metab., 2015, vol. 6, pp. 5–14.

    Google Scholar 

  8. Osadebe, P.O., and Ukweze, S.E., J. Biol. Res. Biotech., 2004, vol. 2, pp. 18–23.

    Google Scholar 

  9. Obatomi, D.K., Bikomo, E.O., and Temple, V.J., J. Ethnopharmacol., 1994, vol. 43, pp. 13–17.

    Article  CAS  PubMed  Google Scholar 

  10. Osadebe, P.O., Omeje, E.O., Uzor, P.F., David, E.K., and Obiorah, D.C., Asian Pacif. J. Tropic. Med., 2010, vol. 3, pp. 196–199.

    Article  Google Scholar 

  11. Ijomone, O.M., Olaibi, O.K., Biose, I.J., Mba, C., Tete, S.A., and Nwoha, P.U. Pathophysiology, 2015, vol. 22, no. 1, pp. 57–63.

    Article  CAS  PubMed  Google Scholar 

  12. Mori, Y., Cao, D., Li, X., Yin, J., Wang, Z., and Zhang, Y., Int. J. Mol. Sci., 2014, vol. 15, pp. 7667–7683.

    Article  CAS  Google Scholar 

  13. Ijomone, O.M., Olaibi, O.K., Biose, I.J., Mba, C., Umoren, K.E., and Nwoha, P.U., Ann. Neurosci., 2014, vol. 21, no. 2, pp. 42–46.

    PubMed  PubMed Central  Google Scholar 

  14. Naqvi, F., Haider, S., Batool, Z., Perveen, T., and Haleem, D.J., Pharmcal. Rep., 2012, vol. 64, pp. 64–69.

    Article  Google Scholar 

  15. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J., J. Biol. Chem 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  16. Misra, H.P. and Fridovich, I., J. Biol. Chem., 1972, vol. 247, pp. 3170–3175.

    CAS  PubMed  Google Scholar 

  17. Claiborne, A., Handbook of Methods for Oxygen Radical Research, Greenwald, A.R. (Ed.), Boca Raton, CRC Press, 1995, pp. 237–242.

    Google Scholar 

  18. Jollow, D.J., Mitchell, J.R., Zampaglione, N., and Gillette, J.R., Pharmacol., 1974, vol. 11, pp. 151–169.

    Article  CAS  Google Scholar 

  19. Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., and Hoekstra, W.G., Science, 1973, vol. 179, pp. 588–590.

    Article  CAS  PubMed  Google Scholar 

  20. Farombi, E.O., Tahnteng, J.G., and Agboola, A.O., Food Chem. Toxicol., 2000, vol. 38, pp. 535–541.

    Article  CAS  PubMed  Google Scholar 

  21. Ellman, G.L., Courtney, K.D., Andres, V., and Featherstone, R.M., Biochem. Pharmacol., 1961, vol. 7, pp. 88–95.

    Article  CAS  PubMed  Google Scholar 

  22. Branstrup, N., Krik, J.E., and Bruni, C., J. Gerontol., 1957, vol. 12, pp. 166–171.

    Article  Google Scholar 

  23. Dawson, R.C.M., Elliott, D.C., Elliott, W.H., and Jones K.M., Data for Biochemical Research, 2nd ed., Oxford, Clarendon Press, 1969, pp. 483–498.

    Google Scholar 

  24. Ebokaiwe, A.P. and Farombi, E.O., J. App. Life. Sci. Inter., 2016, vol. 5, pp. 1–11.

    Google Scholar 

  25. Moghadamtousi, S.Z., Hajrezaei, M., Abdul-Kadir, H., and Zandi, K., Evidence-Based Compl. Altern. Med., 2013, Article ID 273712.

  26. Maritim, A.C., Sanders, R.A., and Watkins, J.B., J. Nutr. Biochem., 2003, vol. 14, pp. 288–294.

    Article  CAS  PubMed  Google Scholar 

  27. Vestergoard, H., Dan. Med. Bull., 1999. vol. 46, pp. 13–34.

    Google Scholar 

  28. Sato, T., Magata, K., and Koga, N., Biochem. Biophys. Res. Commun., 1998, vol. 245, pp. 378–381.

    Article  CAS  PubMed  Google Scholar 

  29. Griendling, K.K., Sorescu, D., and Ushio-Fukai, M., Circ. Res., 2000, vol. 86, pp. 494–501.

    Article  CAS  PubMed  Google Scholar 

  30. Mao, Y., Cao, D., Li, X., Yin, J., Wang, Z., and Zhang, Y., Int. J. Mol. Sci., 2014, vol. 15, pp. 7667–7683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, J., Yin, J., Song, Y., Zhang, L., Ren, Y., and Wang, D., J. Diab. Res., 2014, Article ID 796840, https://doi.org/10.1155/2014/796840

  32. Chen, C., Wang, Y., Zhang, J., Ma, L., Gu, J., and Ho, G., Dis. Model. Mech., 2014, vol. 7, pp. 723–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haider, S., Ahmed, S., Tabassum, S., Memon, Z., Ikram, M., and Haleem, D.J., Acta Neurol. Belg., 2013, vol. 113, pp. 35–41.

    Article  PubMed  Google Scholar 

  34. Meeter, M., Talamini, L., Schmitt, J.A.J., and Riedel, W.M. Neuropsychopharmacology, 2005, vol. 31, pp. 712–720.

    Article  CAS  Google Scholar 

  35. van Elderen, S.G.C., de Roos, A., de Craen, A.J.M., Westendorp, R.G.J., Blauw, G.J., and Jukema, J.W., Neurology, 2010, vol. 75, pp. 997–1002.

    Article  CAS  PubMed  Google Scholar 

  36. van Harten, B., de Leeuw, F.E., Weinstein, H.C., Scheltens, P., and Biessels, G.J., Diabetes Care, 2006, vol. 29, pp. 2539–2548.

    Article  PubMed  Google Scholar 

  37. Huang, M., Gao, L., Yang, L., Lin, F., and Le, H., NeuroImage: Clinical, 2012, vol. 1, pp. 57–65.

    Article  Google Scholar 

  38. Ozdemir, N.G., Akbas, F., Kotil, T., and Yilmaz, A., Turk. J. Med. Sci., 2016, vol. 46, pp. 1579–1592.

    Article  CAS  PubMed  Google Scholar 

  39. Orgel, E. and Mittelman, S.D., Curr. Diab. Rep., 2013, vol. 13, no. 2, pp. 213–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chambless, L.B., Parker, S.L., Hassam-Malani, L., McGirt, M.J., and Thompson R.C., J. Neuro-Oncol., 2012, vol. 106, no. 2, pp. 383–389.

    Article  Google Scholar 

  41. Giovannucci, E., Harlan, D.M., Archer, M.C., Bergenstal, R.M., Gapstur, S.M., and Habel, L.A., CA: Cancer J. Clin., 2010, vol. 60, no. 4, pp. 207–221.

    Google Scholar 

  42. Tieu, M.T., Lovblom, L.E., McNamara, M.G., Mason, W., Laperriere, N., Millar, B., J. Neuro-Oncol., 2015, vol. 124, pp. 119–126.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by FUNAI Institutional based TETFUND grant with code FUNAI/FST/14/B2/022 awarded to Dr. Azubuike Ebokaiwe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azubuike P. Ebokaiwe.

Ethics declarations

Conflict of interest. The authors declare that there are no conflicts of interest.

Ethical approval. All animals received humane care according to the criteria outlined in the “Guide for the Care and Use of Laboratory Animals” prepared by the National Academy of Science (NAS) and published by the National Institute of Health. The experiment was performed in accordance with the guidelines and approval of institutional animal ethics committee AE-FUNA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebokaiwe, A.P., Ijomone, O.M., Osawe, S.O. et al. Influence of Loranthus micranthus against STZ-Induced Neurobehavioral Deficits in Diabetic Rats. Neurochem. J. 13, 283–294 (2019). https://doi.org/10.1134/S1819712419030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712419030061

Keywords:

Navigation