Skip to main content
Log in

Dielectron Production in Pion-Nucleon Reactions at Intermediate Energies

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Dielectron production in the πN interaction at not large energies is studied assuming that the electron- positron pair is produced from splitting of the virtual time-like photon. It allows us to get the interesting information on a nucleon form factor in the time-like region of four momentum transfer squared. The dominant contribution of the Δ-isobar creation in the intermediate state at incident pion momenta of about 0.3–0.4 GeV/c is shown. The experimental distributions over the angle and effective mass \({M_{{e^ + }{e^ - }}}\) of the e+e pair are described satisfactorily. This stimulated us to present theoretical predictions for the \({M_{{e^ + }{e^ - }}}\) distribution in the process πpne+e at different incident momenta, which could be verified, for example, by the HADES experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Amaldi, S. Fubini, and G. Furlan, Springer Tracts in Mod. Phys. 83, 1 (1979).

    Article  ADS  Google Scholar 

  2. T. D. Blokhintseva, Yu. S. Surovtsev, and M. Nagy, Acta Phys. Slov. 49, 351 (1999).

    Google Scholar 

  3. G. I. Smirnov and N. M. Shumeiko, Sov. J. Nucl. Phys. 17, 659 (1973).

    Google Scholar 

  4. Yu. S. Surovtsev, T. D. Blokhintseva, P. Bydzôvsky, and M. Nagy, Phys. Rev. C 71, 055205 (2005).

    Article  ADS  Google Scholar 

  5. M. F. Lutz, B. Friman, and M. Soyeur, Nucl. Phys. A 713, 97 (2003).

    Article  ADS  Google Scholar 

  6. E. L. Bratkovskaya, W. Cassing, and U. Mosel, Nucl. Phys. A 686, 568 (2001).

    Article  ADS  Google Scholar 

  7. R. Shyam and U. Mosel, Phys. Rev. C 67, 065202 (2003); Phys. Rev. C 79, 035203 (2009).

    Article  ADS  Google Scholar 

  8. L. P. Kaptari and B. Kaempfer, Nucl. Phys. A 764, 338 (2006).

    Article  ADS  Google Scholar 

  9. M. P. Rekalo, Sov. J. Nucl. Phys. 1, 760–765 (1965).

    Google Scholar 

  10. D. A. Gaffen, Phys. Rev. C 125, 1745 (1962).

    Article  ADS  Google Scholar 

  11. D. Drechsel, O. Hanstein, S. S. Kamalov, and L. Tiator, Nucl. Phys. A 645, 145 (1999).

    Article  ADS  Google Scholar 

  12. F. A. Berends, A. Dannache, and D. L. Weaver, Nucl. Phys. B 14, 1 (1967).

    Article  ADS  Google Scholar 

  13. D. Drechsel and L. Tiator, J. Phys. G: Nucl. Part. Phys. 18, 449 (1992).

    Article  ADS  Google Scholar 

  14. T. Ericson and W. Weise, Pions and Nuclei (Clarendon, Oxford, 1988).

    Google Scholar 

  15. M. Schaefer, H. C. Doenges, A. Engel, and U. Mosel, Nucl. Phys. A 686, 568 (2001).

    Article  Google Scholar 

  16. K. Haglin, J. Kapusta, and C. Gale, Phys. Lett. B 224, 433 (1989).

    Article  ADS  Google Scholar 

  17. T. Feuster and U. Mosel, Nucl. Phys. A 612, 375 (1997); Phys. Rev. C 58, 457 (1998); Phys. Rev. C 59, 460 (1999).

    Article  ADS  Google Scholar 

  18. Gy. Wolf et al., Nucl. Phys. A 517, 615 (1990).

    Article  ADS  Google Scholar 

  19. S. Teis et al., Z. Phys. A 356, 421 (1997).

    Article  ADS  Google Scholar 

  20. M. A. Kagarlis, GSI Report No. 2000–03 (2000)

    Google Scholar 

  21. I. Frohlich et al., PoS (ACAT), 076 (2007); arXiv:0708.2382 [nucl-ex].

  22. V. N. Gribov, Sov. J. Nucl. Phys. 8, 280 (1967).

    Google Scholar 

  23. I. S. Towner, Phys. Rep. 155, 263 (1987).

    Article  ADS  Google Scholar 

  24. R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1 (1987).

    Article  ADS  Google Scholar 

  25. N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).

    Article  ADS  Google Scholar 

  26. L. E. Marcucci, D. O. Riska, and R. Schiavilla, Phys. Rev. C 58, 3069 (1998).

    Article  ADS  Google Scholar 

  27. S. Ph. Berezhnev et al., Sov. J. Nucl. Phys. 24, 591 (1976).

    Google Scholar 

  28. C. M. Hoffman et al., Phys. Rev. D 28, 660 (1983).

    Article  ADS  Google Scholar 

  29. W. Bratkovskaya and W. Cassing, Nucl. Phys. A 807, 214 (2008).

    Article  ADS  Google Scholar 

  30. A. P. Jerusalimov et al., Eur. Phys. J. A 51, 83 (2015).

    Article  ADS  Google Scholar 

  31. A. P. Jerusalimov and G. I. Lykasov, arXiv:1704.00311 [nucl-th] (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Lykasov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerusalimov, A.P., Lykasov, G.I. Dielectron Production in Pion-Nucleon Reactions at Intermediate Energies. Phys. Part. Nuclei Lett. 15, 457–463 (2018). https://doi.org/10.1134/S1547477118050114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118050114

Navigation