Skip to main content
Log in

Problems of the Qualitative and Quantitative Analysis of Plant Volatiles

  • Review Article
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Strategies for the analysis of plant volatiles have changed significantly over the past 15–20 years due to the introduction of new approaches to sample preparation and analysis, including those initially developed for other areas and currently applied to the analysis of plant metabolites. Any analysis of plant substances consists of two phases. The first phase includes plant material collection, primary processing, conservation, storage, and extraction to prepare samples for research. The second phase is the analysis itself by various chromatographic, spectral, and/or hybrid (hyphenated) techniques. Most scientific publications focus their attention on the second phase, and the first remains “behind the scenes,” although it is in the first phase that the biomaterial experiences significant transformations. It is impossible to correctly and adequately evaluate the ultimate result of a study without taking these transformations into account. Specific difficulties arise in both phases, and they are reviewed in this paper. The wide distribution of modern chromatographic instruments equipped with sophisticated software allows a significant portion of an experiment to be performed automatically. However, one should realize that the improvement of experimental techniques does not change the basics of a method, and, therefore, does not eliminate its intrinsic limitations. To avoid fallacies in the publication of the results, all the experimental data obtained in the automatic mode should be subjected to an impartial revision by the experimenter with regard to all known limitations inherent in methods used for separation and detection of components. In order to correctly interpret experimental results, one should know the entire history of samples under investigation; thus, it is necessary to document carefully all manipulations with plant material from the collection of raw materials till the final sample preparation. Only with this proviso the study can be expected to provide meaningful results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohlmann, J. and Keeling, C.I., Terpenoid biomaterials, Plant J., 2008, vol. 54, no. 4, pp. 656–669. doi 10.1111/j.1365-313X.2008.03449.x

    Article  PubMed  CAS  Google Scholar 

  2. Schwab, W., Davidovich–Rikanati, R., and Lewinsohn, E., Biosynthesis of plant-derived flavor compounds, Plant J., 2008, vol. 54, no. 4, pp. 712–732. doi 10.1111/j.1365-313X.2008.03446.x

    Article  PubMed  CAS  Google Scholar 

  3. Morozov, S.V., Tkacheva, N.I., and Tkachev, A.V., Problems of complex chemical profiling of medicinal plants, Farmats. Farmakol., 2017 (in press).

    Google Scholar 

  4. Bicchi, C., Cagliero, C., and Rubiolo, P., New trends in the analysis of the volatile fraction of matrices of vegetable origin: A short overview. A review, Flavour Fragrance J., 2011, vol. 26, no. 5, pp. 321–325. doi 10.1002/ffj.2059

    CAS  Google Scholar 

  5. Sgorbini, B., Cagliero, C., Boggia, L., Liberto, E., Reichenbach, S.E., Rubiolo, P., Cordero, C., and Bicchi, C., Parallel dual secondary-column-dual detection comprehensive two-dimensional gas chromatography: A flexible and reliable analytical tool for essential oils quantitative profiling, Flavour Fragrance J., 2015, vol. 30, no. 5, pp. 366–380. doi 10.1002/ffj.3255

    Article  CAS  Google Scholar 

  6. Harman-Ware, A.E., Sykes, R., Peter, G.F., and Davis, M., Determination of terpenoid content in pine by organic solvent extraction and fast-GC analysis, Front. Energy Res., 2016, vol. 4, p. 2. doi 10.3389/fenrg.2016.00002

    Article  Google Scholar 

  7. Tranchida, P.Q., Franchina, F.A., and Mondello, L., Analysis of essential oils through comprehensive twodimensional gas chromatography: General utility, Flavour Fragrance J., 2017, vol. 32, no. 4, pp. 218–227, pp. 218–227. doi 10.1002/ffj.3383

    Article  CAS  Google Scholar 

  8. Middleditch, B.S., Analytical Artifacts: GC, MS, HPLC, TLC and PC, J. Chromatogr. Library, Elsevier Science Ltd., 1989, vol. 44.

    Google Scholar 

  9. Jones, W.P. and Kinghorn, A.D., Extraction of plant secondary metabolites, in Natural Products Isolation, Humana Press, 2005, pp. 323–351. doi 10.1385/1-59259-955-9:323

    Google Scholar 

  10. Tkachev, A.V., Issledovanie letuchikh veshchestv rastenii (Research of Volatile Substances of Plants), Novosibirsk, 2008.

    Google Scholar 

  11. Huopalahti, R. and Kesälahti, E., Effect of drying and freeze-drying on the aroma of Dill—Anethum graveolens CV Mammut, in Essential Oils and Aromatic Plants: Proceedings of the 15th International Symposium on Essential Oils, Held in Noordwijkerhout, The Netherlands, July 19–21, 1984, Springer Netherlands, 1985, pp. 179–184. doi 10.1007/978-94-009-5137-2_19

    Google Scholar 

  12. Tkachev, A.V., Korolyuk, E.A., Yusubov, M.S., and Gur’ev, A.M., Changes in the composition of the essential oil at different stages of storage of raw materials, Khim. Rastit. Syr’ia, 2002, no. 1, pp. 19–30.

    Google Scholar 

  13. Utsumi, S.A., Cibils, A.F., Estell, R.E., and Wang, Y.-F., Influence of plant material handling protocols on terpenoid profiles of one-seed juniper saplings, Rangeland Ecol. Manage., 2006, vol. 59, no. 6, pp. 668–673. doi 10.2111/06-010R1.1

    Article  Google Scholar 

  14. Tkachev, A.V., Prokusheva, D.L., and Domrachev, D.V., Dikorastushchie efirnomaslichnye rasteniia Yuzhnoi Sibiri (Wild Essential Oil Plants of Southern Siberia), Novosibirsk, 2017.

    Google Scholar 

  15. Kubeczka, K.-H., Progress in isolation techniques for essential oil constituents, in Essential Oils and Aromatic Plants: Proceedings of the 15th International Symposium on Essential Oils, Held in Noordwijkerhout, The Netherlands, July 19–21, 1984, Springer Netherlands, 1985, pp. 107–126. doi 10.1007/978-94-009-5137-2_9

    Google Scholar 

  16. Casteel, D.A., Peroxy natural products, Nat. Prod. Rep., 1992, vol. 9, no. 4, pp. 55–73. doi 10.1039/NP9920900289

    Article  Google Scholar 

  17. Casteel, D.A., Peroxy natural products, Nat. Prod. Rep., 1999, vol. 16, no. 1, pp. 55–73. doi 10.1039/A705725C

    Article  Google Scholar 

  18. Jung, M., Kim, H., Lee, K., and Park, M., Naturally occurring peroxides with biological activities, Mini Rev. Med. Chem., 2003, vol. 3, no. 2, pp. 159–165. doi 10.2174/1389557033405313

    Article  PubMed  CAS  Google Scholar 

  19. Liu, D.-Z. and Liu, J.-K., Peroxy natural products, Nat. Prod. Bioprospect., 2013, vol. 3, no. 5, pp. 161–206. doi 10.1007/s13659-013-0042-7

    Article  CAS  PubMed Central  Google Scholar 

  20. Bu, M., Yang, B.B., and Hu, L., Natural endoperoxides as drug lead compounds, Curr. Med. Chem., 2016, vol. 23, no. 4, pp. 383–405. doi 10.2174/0929867323666151127200949

    Article  PubMed  CAS  Google Scholar 

  21. Wolfenden, R., Lu, X., and Young, G., Spontaneous hydrolysis of glycosides, J. Am. Chem. Soc., 1998, vol. 120, no. 27, pp. 6814–6815. doi 10.1021/ja9813055

    Article  CAS  Google Scholar 

  22. Zhang, W.L., Chen, J.-P., Lam, K.Y.-C., Zhan, J.Y.-X., Yao, P., Dong, T.T.-X., and Tsim, K.W.-K., Hydrolysis of glycosidic flavonoids during the preparation of Danggui Buxue Tang: An outcome of moderate boiling of Chinese herbal mixture, J. Evidence-Based Complementary Altern. Med., 2014, vol. 2014. doi 10.1155/2014/608721

    Google Scholar 

  23. Bolarinwa, I.F., Oke, M.O., Olaniyan, S.A., and Ajala, A.S., A review of cyanogenic glycosides in edible plants, in Toxicology—New Aspects to This Scientific Conundrum, InTech, 2016, pp. 179–191. doi 10.5772/64886

    Google Scholar 

  24. Schmaus, G. and Kubeczka, K.-H., The influence of isolation conditions on the composition of essential oils containing linalool and linalyl acetate, in Essential Oils and Aromatic Plants: Proceedings of the 15th International Symposium on Essential Oils, held in Noordwijkerhout, The Netherlands, July 19–21, 1984, Springer Netherlands, 1985, pp. 127–134. doi 10.1007/978-94-009-5137-2_10

    Google Scholar 

  25. Baldermann, S., Yang, Z., Sakai, M., Fleischmann, P., and Watanabe, N., Volatile constituents in the scent of roses, Floricult. Ornam. Biotechnol., 2009, vol. 3, no. 1, pp. 89–97.

    Google Scholar 

  26. Jean, F.-I., Garneau, F.-X., Collin, G.J., Bouhajib, M., and Zamir, L.O., The essential oil and glycosidically bound volatile compounds of Taxus canadensis Marsh, J. Essent. Oil Res., 1993, vol. 5, no. 1, pp. 7–11. doi 10.1080/10412905.1993.9698163

    Article  CAS  Google Scholar 

  27. Mastelić, J., Miloš, M., Kuštrak, D., and Radonić, A., The essential oil and glycosidically bound volatile compounds of Calamintha nepeta (L.) Savi, Croat. Chem. Acta, 1998, vol. 71, no. 1, pp. 147–154. http://hrcak.srce.hr/132332.

    Google Scholar 

  28. Mastelić, J., Miloš, M., Kuštrak, D., and Radonić, A., Essential oil and glycosidically bound volatile compounds from the needles of common Juniper (Juniperus communis L.), Croat. Chem. Acta, 2000, vol. 73, no. 2, pp. 585–593. http://hrcak.srce.hr/132073.

    Google Scholar 

  29. Politeo, O., Jukic, M., and Milos, M., Comparison of chemical composition and antioxidant activity of glycosidically bound and free volatiles from clove (Eugenia caryophyllata Thunb.), J. Food Biochem., 2010, vol. 34, no. 1, pp. 129–141. doi 10.1111/j.1745-4514.2009.00269.x

    Article  CAS  Google Scholar 

  30. Sgorbini, B., Cagliero, C., Pagani, A., Sganzerla, M., Boggia, L., Bicchi, C., and Rubiolo, P., Determination of free and glucosidically-bound volatiles in plants. Two case studies: L-menthol in peppermint (Mentha x piperita L.) and eugenol in clove (Syzygium aromaticum (L.) Merr., L.M. Perry), Phytochemistry, 2015, vol. 117, pp. 296–305. doi 10.1016/j.phytochem. 2015.06.017

    Article  PubMed  CAS  Google Scholar 

  31. Tissier, A., Glandular trichomes: What comes after expressed sequence tags?, Plant J., 2012, vol. 70, no. 1, pp. 51–68. doi 10.1111/j.1365-313X.2012.04913.x

    Article  PubMed  CAS  Google Scholar 

  32. Lange, M.B. and Turner, G.W., Terpenoid biosynthesis in trichomes—current status and future opportunities, Plant Biotechnol. J., 2013, vol. 11, no. 1, pp. 2–22. doi 10.1111/j.1467-7652.2012.00737.x

    Article  PubMed  CAS  Google Scholar 

  33. Schilmiller, A.L., Last, R.L., and Pichersky, E., Harnessing plant trichome biochemistry for the production of useful compounds, Plant J., 2008, vol. 54, no. 4, pp. 702–711. doi 10.1111/j.1365-313X.2008.03432.x

    Article  PubMed  CAS  Google Scholar 

  34. Bicchi, C., D' Amato, A., Frattini, C., Nano, G.M., Cappelletti, E., and Caniato, R., Analysis of essential oils by direct sampling from plant secretory structures and capillary gas chromatography, J. High Resolut. Chromatogr., 1985, vol. 8, no. 8, pp. 431–435. doi 10.1002/jhrc.1240080815

    CAS  Google Scholar 

  35. Fischer, N., Nitz, S., and Drawert, F., Original flavour compounds and the essential oil composition of marjoram (Majorana hortensis Moench), Flavour Fragrance J., 1987, vol. 2, no. 2, pp. 55–61. doi 10.1002/ffj.2730020204

    Article  CAS  Google Scholar 

  36. Toyota, M., Koyama, H., Mizutani, M., and Asakawa, Y., (−)-ent-Spathulenol isolated from liverworts is an artifact, Phytochemistry, 1996, vol. 41, no. 5, pp. 1347–1350. doi 10.1016/0031-9422(95)00798-9

    CAS  Google Scholar 

  37. Holloway, P.J., The chemical constitution of plant cutins, in The Plant Cuticle, London: Academic, 1982, pp. 45–84.

    Google Scholar 

  38. Boom, A., Damsté, J.S., and de Leeuw, J., Cutan, a common aliphatic biopolymer in cuticles of droughtadapted plants, Org. Geochem., 2005, vol. 36, no. 4, pp. 595–601. doi 10.1016/j.orggeochem.2004.10.017

    Article  CAS  Google Scholar 

  39. Valkama, E., Salminen, J.-P., Koricheva, J., and Pihlaja, K., Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in Finnish Birch species, Ann. Bot. (Oxford, U. K.), 2003, vol. 91, no. 6, pp. 643–655. doi 10.1093/aob/mcg070

    Article  CAS  Google Scholar 

  40. Guhling, O., Kinzler, C., Dreyer, M., Bringmann, G., and Jetter, R., Surface composition of myrmecophilic plants: Cuticular wax and glandular trichomes on leaves of Macaranga tanarius, J. Chem. Ecol., 2005, vol. 31, no. 10, pp. 2323–2341. doi 10.1007/s10886-005-7104-1

    Article  PubMed  CAS  Google Scholar 

  41. Can, BaserK.H. and Buchbauer, G., Handbook of Essential Oils: Science, Technology, and Applications, CRC Press, 2016, 2nd ed.

    Google Scholar 

  42. Matura, M., Sköld, M., Börje, A., Andersen, K.E., Bruze, M., Frosch, P., Goossens, A., Johansen, J.D., Svedman, C., White, I.R., and Karlberg, A.-T., Selected oxidized fragrance terpenes are common contact allergens, Contact Dermatitis, 2005, vol. 52, no. 6, pp. 320–328. doi 10.1111/j.0105-1873.2005.00605.x

    Article  PubMed  CAS  Google Scholar 

  43. Christensson, J.B., Matura, M., Gruvberger, B., Bruze, M., and Karlberg, A.-T., Linalool—a significant contact sensitizer after air exposure, Contact Dermatitis, 2010, vol. 62, no. 1, pp. 32–41. doi 10.1111/j.1600-0536.2009.01657.x

    Article  PubMed  CAS  Google Scholar 

  44. Bråred Christensson, J., Andersen, K.E., Bruze, M., Johansen, J.D., Garcia-Bravo, B., Giménez Arnau, A., Goh, C.-L., Nixon, R., and White, I.R., Air-oxidized linalool—a frequent cause of fragrance contact allergy, Contact Dermatitis, 2012, vol. 67, no. 5, pp. 247–259. doi 10.1111/j.1600-0536.2012.02134.x

    Google Scholar 

  45. Bråred Christensson, J., Karlberg, A.-T., Andersen, K.E., Bruze, M., Johansen, J.D., Garcia-Bravo, B., Giménez Arnau, A., Goh, C.-L., Nixon, R., and White, I.R., Oxidized limonene and oxidized linalool— concomitant contact allergy to common fragrance terpenes, Contact Dermatitis, 2016, vol. 74, no. 5, pp. 273–280. doi 10.1111/cod.12545

    Google Scholar 

  46. Sköld, M., Hagvall, L., and Karlberg, A.-T., Autoxidation of linalyl acetate, the main component of lavender oil, creates potent contact allergens, Contact Dermatitis, 2008, vol. 58, no. 1, pp. 9–14. doi 10.1111/j.1600-0536.2007.01262.x

    Article  PubMed  Google Scholar 

  47. Hagvall, L., Berglund, V., and Bråred Christensson, J., Air-oxidized linalyl acetate—an emerging fragrance allergen?, Contact Dermatitis, 2015, vol. 72, no. 4, pp. 216–223. doi 10.1111/cod.12350

    Article  PubMed  CAS  Google Scholar 

  48. Matura, M., Goossens, A., Bordalo, O., Garcia-Bravo, B., Magnusson, K., Wrangsjo, K., and Karlberg, A.-T., Patch testing with oxidized R-(+)-limonene and its hydroperoxide fraction, Contact Dermatitis, 2003, vol. 49, no. 1, pp. 15–21. doi 10.1111/j.0105-1873.2003.00135.x

    CAS  Google Scholar 

  49. Matura, M., Sköld, M., Börje, A., Andersen, K.E., Bruze, M., Frosch, P., Goossens, A., Johansen, J.D., Svedman, C., White, I.R., and Karlberg, A.-T., Not only oxidized R-(+)-but also S-(−)-limonene is a common cause of contact allergy in dermatitis patients in Europe, Contact Dermatitis, 2006, vol. 55, no. 5, pp. 274–279. doi 10.1111/j.1600-0536.2006.00939.x

    Article  PubMed  CAS  Google Scholar 

  50. Christensson, J.B., Johansson, S., Hagvall, L., Jonsson, C., Börje, A., and Karlberg, A.-T., Limonene hydroperoxide analogues differ in allergenic activity, Contact Dermatitis, 2008, vol. 59, no. 6, pp. 344–352. doi 10.1111/j.1600–0536.2008.01442.x

    Article  PubMed  CAS  Google Scholar 

  51. Bråred Christensson, J., Andersen, K.E., Bruze, M., Johansen, J.D., Garcia-Bravo, B., Giménez-Arnau, A., Goh, C.-L., Nixon, R., and White, I.R., An international multicentre study on the allergenic activity of air-oxidized R-limonene, Contact Dermatitis, 2013, vol. 68, no. 4, pp. 214–223. doi 10.1111/cod.12036

    Google Scholar 

  52. Bråred Christensson, J., Hellsén, S., Börje, A., and Karlberg, A.-T., Limonene hydroperoxide analogues show specific patch test reactions, Contact Dermatitis, 2014, vol. 70, no. 5, pp. 291–299. doi 10.1111/cod.12195

    Google Scholar 

  53. Niklasson, I.B., Delaine, T., Islam, M.N., Karlsson, R., Luthman, K., and Karlberg, A.-T., Cinnamyl alcohol oxidizes rapidly upon air exposure, Contact Dermatitis, 2013, vol. 68, no. 3, pp. 129–138. doi 10.1111/cod.12009

    Article  PubMed  CAS  Google Scholar 

  54. Rudbäck, J., Hagvall, L., Börje, A., Nilsson, U., and Karlberg, A.-T., Characterization of skin sensitizers from autoxidized citronellol—impact of the terpene structure on the autoxidation process, Contact Dermatitis, 2014, vol. 70, no. 6, pp. 329–339. doi 10.1111/cod.12234

    Article  PubMed  CAS  Google Scholar 

  55. Hagvall L., Skold M., Brared–Christensson J., Börje A. & Karlberg A.-T., Lavender oil lacks natural protection against autoxidation, forming strong contact allergens on air exposure, Contact Dermatitis, 2008, vol. 59, no. 3, pp. 143–150. doi 10.1111/j.1600-0536.2008.01402.x

    Article  PubMed  CAS  Google Scholar 

  56. Njoroge, S.M., Ukeda, H., and Sawamura, M., Changes in the volatile composition of Yuzu (Citrus junos Tanaka) cold-pressed oil during storage, J. Agricult. Food Chem., 1996, vol. 44, no. 2, pp. 550–556. doi 10.1021/jf950284k

    Article  CAS  Google Scholar 

  57. Njoroge, S.M., Ukeda, H., and Sawamura, M., Changes of the volatile profile and artifact formation in Daidai (Citrus aurantium) cold-pressed peel oil on storage, J. Agricult. Food Chem., 2003, vol. 51, no. 14, pp. 4029–4035. doi 10.1021/jf021215q

    Article  CAS  Google Scholar 

  58. Sun, H., Ni, H., Yang, Y., Wu, L., Cai, H.-N., Xiao, A.-F., and Chen, F.J., Investigation of sunlight-induced deterioration of aroma of Pummelo (Citrus maxima) essential oil, Agricult. Food Chem., 2014, vol. 62, no. 49, pp. 11818–11830. doi 10.1021/jf504294g

    Article  CAS  Google Scholar 

  59. Turek, C. and Stintzing, F.C., Evaluation of selected quality parameters to monitor essential oil alteration during storage, J. Food Sci., 2011, vol. 76, no. 9, pp. C1365–C1375. doi 10.1111/j.1750-3841.2011.02416.x

    Article  PubMed  CAS  Google Scholar 

  60. Turek, C. and Stintzing, F.C., Stability of essential oils: A review, Compr. Rev. Food Sci. Food Saf., 2013, vol. 12, no. 1, pp. 40–53. doi 10.1111/1541-4337.12006

    Article  CAS  Google Scholar 

  61. Kashiwagi, T., Lan Phi, N.T., and Sawamura, M., Compositional changes in Yuzu (Citrus junos) steamdistilled oil and effects of antioxidants on oil quality during storage, Food Sci. Technol. Res., 2010, vol. 16, no. 1, pp. 51–58. doi 10.3136/fstr.16.51

    CAS  Google Scholar 

  62. Takeda, K., Horibe, I., and Minato, H., Absolute configuration of bicycloelemene and conformation of bicyclogermacrene, J. Chem. Soc. D, 1971, no. 7, p. 308. doi 10.1039/C29710000308

    Article  Google Scholar 

  63. Reichardt, P.B., Anderson, B.J., Clausen, T.P., and Hoskins, L.C., Thermal instability of germacrone: Implications for gas chromatographic analysis of thermally unstable analytes, Can. J. Chem., 1989, vol. 67, no. 7, pp. 1174–1177. doi 10.1139/v89-177

    Article  CAS  Google Scholar 

  64. Garcia, G., Charmillon, J.-M., Roux, E., Sutour, S., Rakotozafy, J.B., Désiré, O., Paoli, M., Tomi, F., and Rabehaja, D.J.R., Chemical composition of leaf and bark essential oils of Vepris unifoliolata from Madagascar, J. Essent. Oil Res., 2017, vol. 29, no. 3, pp. 214–220. doi 10.1080/10412905.2016.1251982

    Article  CAS  Google Scholar 

  65. Rabe, P., Barra, L., Rinkel, J., Riclea, R., Citron, C.A., Klapschinski, T.A., Janusko, A., and Dickschat, J.S., Conformational analysis, thermal rearrangement, and EI-MS fragmentation mechanism of (1(10)E,4E,6S,7R)-germacradien-6-ol by 13C-labeling experiments, Angew. Chem., Int. Ed., 2015, vol. 54, no. 45, pp. 13448–13451. doi 10.1002/anie.201507615

    Article  CAS  Google Scholar 

  66. Nilsson, J., Carlberg, J., Abrahamsson, P., Hulthe, G., Persson, B.-A., and Karlberg, A.-T., Evaluation of ionization techniques for mass spectrometric detection of contact allergenic hydroperoxides formed by autoxidation of fragrance terpenes, Rapid Commun. Mass Spectrom., 2008, vol. 22, no. 22, pp. 3593–3598. doi 10.1002/rcm.3770

    Article  PubMed  CAS  Google Scholar 

  67. Valcárcel, M., Cárdenas, S., Simonet, B., and Carrillo- Carrión, C., Principles of qualitative analysis in the chromatographic context, J. Chromatogr. A, 2007, vol. 1158, nos. 1–2, pp. 234–240. doi 10.1016/j.chroma.2007.03.034

    Article  PubMed  CAS  Google Scholar 

  68. Stashenko, E.E. and Martínez, J.R., GC-MS analysis of volatile plant secondary metabolites, in Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications, InTech, 2012, pp. 247–270. doi 10.5772/3224610.5772/32246

    Google Scholar 

  69. Chamorro, E.R., Zambón, S.N., Morales, W.G., Sequeira, A.F., and Velasco, G.A., Study of the chemical composition of essential oils by gas chromatography, in Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications, InTech, 2012, pp. 307–324. doi 10.5772/3320110.5772/33201

    Google Scholar 

  70. Rubiolo, P., Sgorbini, B., Liberto, E., Cordero, C., and Bicchi, C., Essential oils and volatiles: sample preparation and analysis. A review, Flavour Fragrance J., 2010, vol. 25, no. 5, pp. 282–290. doi 10.1002/ffj.1984

    Article  CAS  Google Scholar 

  71. Jones, C.E., Kato, S., Nakashima, Y., and Kajii, Y., A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air, Atmos. Meas. Tech., 2014, vol. 7, no. 5, pp. 1259–1275. doi 10.5194/amt-7-1259-2014

    Article  CAS  Google Scholar 

  72. Kováts, E., Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone, Helv. Chim. Acta, 1958, vol. 41, no. 7, pp. 1915–1932. doi 10.1002/hlca.19580410703

    Article  Google Scholar 

  73. Wick, C.D., Siepmann, J., Klotz, W.L., and Schure, M.R., Temperature effects on the retention of n-alkanes and arenes in helium–squalane gas–liquid chromatography, J. Chromatogr. A, 2002, vol. 954, no. 1, pp. 181–190. doi 10.1016/S0021-9673(02)00171-1

    Article  PubMed  CAS  Google Scholar 

  74. Héberger, K., Quantitative structure–(chromatographic) retention relationships, J. Chromatogr. A, 2007, vol. 1158, nos. 1–2, pp. 273–305. doi 10.1016/j.chroma.2007.03.108

    Article  PubMed  CAS  Google Scholar 

  75. van den Dool, H. and Kratz, P.D., A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography, J. Chromatogr., 1963, vol. 11, pp. 463–471. doi 10.1016/S0021-9673(01)80947-X

    Article  Google Scholar 

  76. Bicchi, C., Binello, A., D’Amato, A., and Rubiolo, P., Reliability of Van den Dool retention indices in the analysis of essential oils, J. Chromatogr. Sci., 1999, vol. 37, no. 8, pp. 288–294. doi 10.1093/chromsci/37.8.288

    Article  CAS  Google Scholar 

  77. Analytical Methods Committee Application of Gas-Liquid Chromatography to the Analysis of Essential Oils. Part XVII. Fingerprinting of Essential Oils by Temperature-Programmed Gas-Liquid Chromatography using Capillary Columns with Non-polar Stationary Phases, Analyst, 1997, vol. 122, pp. 1167–1174. doi 10.1039/A704651K

  78. Adams, R.P., Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, Illinois, USA: Allured Publishing Corporation, 2007, 4th ed.

    Google Scholar 

  79. Gonzalez, F. and Nardillo, A., Retention index in temperature-programmed gas chromatography, J. Chromatogr. A, 1999, vol. 842, no. 1, pp. 29–49. doi 10.1016/S0021-9673(99)00158-2

    Article  CAS  Google Scholar 

  80. Ong, R., Shellie, R., and Marriott, P., Observation of non-linear chromatographic peaks in comprehensive two-dimensional gas chromatography, J. Sep. Sci., 2001, vol. 24, no. 5, pp. 367–377. doi 10.1002/1615-9314(20010501)24:5<367::AID-JSSC367>3.0.CO;2-U

    Article  CAS  Google Scholar 

  81. Western, R.J. and Marriott, P.J., Retention correlation maps in comprehensive two-dimensional gas chromatography, J. Sep. Sci., 2002, vol. 25, no. 13, pp. 831–838. doi 10.1002/1615-9314(20020901)25:13<831::AID-JSSC832> 3.0.CO;2-R

    Article  Google Scholar 

  82. Zenkevich, I.G., New methods for calculating gas chromatographic retention methods. The use of linear-logarithmic correlation equations, the principles of structural analogy and molecular dynamics methods, in 100 let khromatografii (100 Years of Chromatography), Rudenko, B.A., Moscow, 2003, pp. 311–336.

    Google Scholar 

  83. Egolf, L.M. and Jurs, P.C., Quantitative structureretention and structure-odor intensity relationships for a diverse group of odor-active compounds, Anal. Chem., 1993, vol. 65, no. 21, pp. 3119–3126. doi 10.1021/ac00069a027

    Article  PubMed  CAS  Google Scholar 

  84. Kaliszan, R. and Bączek, T., QSAR in chromatography: quantitative structure–retention relationships (QSRRs), in Recent Advances in QSAR Studies: Methods and Applications, Springer Netherlands, 2010, pp. 223–259. doi 10.1007/978-1-4020-9783-6_8

    Google Scholar 

  85. Todeschini, R. and Consonni, V., Handbook of Molecular Descriptors, Wiley–VCH Verlag Gmb, 2000.

    Book  Google Scholar 

  86. Beteringhe, A., Radutiu, A.C., Culita, D.C., Mischie, A., and Spafiu, F., Quantitative structure–retention relationship (QSRR) study for predicting gas chromatographic retention times for some stationary phases, QSAR Comb. Sci., 2008, vol. 27, no. 8, pp. 996–1005. doi 10.1002/qsar.200730097

    Article  CAS  Google Scholar 

  87. Ausloos, P., Clifton, C., Lias, S., Mikaya, A., Stein, S., Tchekhovskoi, D., Sparkman, O., Zaikin, V., and Zhu, D., The critical evaluation of a comprehensive mass spectral library, J. Am. Soc. Mass Spectrom., 1999, vol. 10, no. 4, pp. 287–299. doi 10.1016/S1044-0305(98)00159-7

    Article  PubMed  CAS  Google Scholar 

  88. Lebedev, A.T., Mass-spektrometriya v organicheskoi khimii (Mass Spectrometry in Organic Chemistry, Moscow, 2003.

    Google Scholar 

  89. McAndrew, B.A., Sesquiterpenoids: The lost dimension of perfumery, Perfumer Flavorist, 1992, vol. 17, no. 4, pp. 1–12.

    CAS  Google Scholar 

  90. Helmig, D., Revermann, T., Pollmann, J., Kaltschmidt, O., Hernández, A.J., Bocquet, F., and David, D., Calibration system and analytical considerations for quantitative sesquiterpene measurements in air, J. Chromatogr. A, 2003, vol. 1002, nos. 1–2, pp. 193–211. doi 10.1016/S0021-9673(03)00619-8

    Article  PubMed  CAS  Google Scholar 

  91. Jacobsson, U. and Muddathir, A.K., Four biologically active sesquiterpenes of the drimane type isolated from Polygonum glabrum, Phytochemistry, 1992, vol. 31, no. 12, pp. 4207–4211. doi 10.1016/0031-9422(92)80444-J

    Article  CAS  Google Scholar 

  92. Zheng, G.-Q., Kenney, P.M., and Lam, L.K.T., Sesquiterpenes from Clove (Eugenia caryophyllata) as potential anticarcinogenic agents, J. Nat. Prod., 1992, vol. 55, no. 7, pp. 999–1003. doi 10.1021/np50085a029

    Article  PubMed  CAS  Google Scholar 

  93. Sabulal, B., Dan, M., Anil John, J., Kurup, R., Pradeep, N.S., Valsamma, R.K., and George, V., Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity, Phytochemistry, 2006, vol. 67, no. 22, pp. 2469–2473. doi 10.1016/j.phytochem.2006.08.003

    CAS  Google Scholar 

  94. Medeiros, R., Passos, G.F., Vitor, C.E., Koepp, J., Mazzuco, T.L., Pianowski, L.F., Campos, M.M., and Calixto, J.B., Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw, Br. J. Pharmacol., 2007, vol. 151, no. 5, pp. 618–627. doi 10.1038/sj.bjp.0707270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Gertsch, J., Leonti, M., Raduner, S., Racz, I., Chen, J.-Z., Xie, X.-Q., Altmann, K.-H., Karsak, M., and Zimmer, A., Beta-caryophyllene is a dietary cannabinoid, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 26, pp. 9099–9104. doi 10.1073/pnas.0803601105

    Article  PubMed  PubMed Central  Google Scholar 

  96. Langhasova, L., Hanusova, V., Rezek, J., Stohanslova, B., Ambroz, M., Kralova, V., Vanek, T., Lou, J.D., Yun, Z.L., Yang, J., and Skalova, L., Essential oil from Myrica rubra leaves inhibits cancer cell proliferation and induces apoptosis in several human intestinal lines, Ind. Crops Prod., 2014, vol. 59, pp. 20–26. doi 10.1016/j.indcrop.2014.04.018

    Article  CAS  Google Scholar 

  97. Klauke, A.-L., Racz, I., Pradier, B., Markert, A., Zimmer, A., Gertsch, J., and Zimmer, A., The cannabinoid CB2 receptor-selective phytocannabinoid betacaryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain, Eur. Neuropsychopharmacol., 2014, vol. 24, no. 4, pp. 608–620. doi 10.1016/j.euroneuro.2013.10.008

    Article  PubMed  CAS  Google Scholar 

  98. Gubiani, J.R., Zeraik, M.L., Oliveira, C.M., Ximenes, V.F., Nogueira, C.R., Fonseca, L.M., Silva, D.H.S., Bolzani, V.S., and Araujo, A.R., Biologically active eremophilane-type sesquiterpenes from Camarops sp., an endophytic fungus isolated from Alibertia macrophylla, J. Nat. Prod., 2014, vol. 77, no. 3, pp. 668–672. doi 10.1021/np400825s

    Article  PubMed  CAS  Google Scholar 

  99. Sarpietro, M.G., Sotto, A.D., Accolla, M.L., and Castelli, F., Interaction of β-caryophyllene and β-caryophyllene oxide with phospholipid bilayers: Differential scanning calorimetry study, Thermochim. Acta, 2015, vol. 600, pp. 28–34. doi 10.1016/j.tca.2014.11.029

    Article  CAS  Google Scholar 

  100. Fidyt, K., Fiedorowicz, A., Strzadala, L., and Szumny, A., β-caryophyllene and β-caryophyllene oxide—natural compounds of anticancer and analgesic properties, Cancer Med., 2016, vol. 5, no. 10, pp. 3007–3017. doi 10.1002/cam4.816

    PubMed  CAS  Google Scholar 

  101. Joulain, D. and König, W.A., Atlas of Spectral Data of Sesquiterpene Hydrocarbons, EB–Verlag, 2001.

    Google Scholar 

  102. Lemberkovics, É. and Verzár-Petri, G., Gas chromatographic characterization of frequently occurring sesquiterpenes in essential oils, in Essential Oils and Aromatic Plants: Proceedings of the 15th International Symposium on Essential Oils, Held in Noordwijkerhout, The Netherlands, July 19–21, 1984, Springer Netherlands, 1985, pp. 103–105. doi 10.1007/978-94-009-5137-2_8

    Google Scholar 

  103. Sarker, S.D. and Nahar, L., Hyphenated techniques, Natural Products Isolation, Humana Press, 2005, pp. 233–267. doi 10.1385/1-59259-955-9:233

    Book  Google Scholar 

  104. Hubert, J., Nuzillard, J.-M., and Renault, J.-H., Dereplication strategies in natural product research: How many tools and methodologies behind the same concept?, Phytochem. Rev., 2017, vol. 16, no. 1, pp. 55–95. doi 10.1007/s11101-015-9448-7

    Article  CAS  Google Scholar 

  105. Marriott, P.J., Massil, T., and Hugel, H., Molecular structure retention relationships in comprehensive two-dimensional gas chromatography, J. Sep. Sci., 2004, vol. 27, nos. 15–16, pp. 1273–1284. doi 10.1002/jssc.200401917

    Article  PubMed  CAS  Google Scholar 

  106. Pang, T., Zhu, S., Lu, X., and Xu, G., Identification of unknown compounds on the basis of retention index data in comprehensive two-dimensional gas chromatography, J. Sep. Sci., 2007, vol. 30, no. 6, pp. 868–874. doi 10.1002/jssc.200600471

    Article  PubMed  CAS  Google Scholar 

  107. Shellie, R., Marriott, P., and Cornwell, C., Application of comprehensive two-dimensional gas chromatography (GC×GC) to the enantioselective analysis of essential oils, J. Sep. Sci., 2001, vol. 24, nos. 10–11, pp. 823–830. doi 10.1002/1615-9314(20011101)24: 10/11<823::AID-JSSC823>3.0.CO;2-H

    Article  CAS  Google Scholar 

  108. Cagliero, C., Sgorbini, B., Cordero, C., Liberto, E., Rubiolo, P., and Bicchi, C., Enantioselective gas chromatography with derivatized cyclodextrins in the flavour and fragrance field, Isr. J. Chem., 2016, vol. 56, nos. 11–12, pp. 925–939. doi 10.1002/ijch.201600091

    Article  CAS  Google Scholar 

  109. Tkachev, A.V., Chirospecific analysis of plant volatiles, Russ. Chem. Rev., 2007, vol. 76, no. 10, pp. 951–969. doi 10.1070/RC2007v076n10ABEH003728

    Article  CAS  Google Scholar 

  110. de Juan, A. and Tauler, R., Factor analysis of hyphenated chromatographic data: Exploration, resolution and quantification of multicomponent systems, J. Chromatogr. A, 2007, vol. 1158, nos. 1–2, pp. 184–195. doi 10.1016/j.chroma.2007.05.045

    Article  PubMed  CAS  Google Scholar 

  111. Baldovini, N., Tomi, F., and Casanova, J., Identification and quantitative determination of furanodiene, a heat-sensitive compound, in essential oil by 13CNMR, Phytochem. Anal., 2001, vol. 12, no. 1, pp. 58–63. doi 10.1002/1099-1565(200101/02)12:1<58::AIDPCA559> 3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  112. Cavalli, J.-F., Tomi, F., Bernardini, A.-F., and Casanova, J., Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC-MS and 13CNMR spectroscopy: quantitative determination of ascaridole, a heat-sensitive compound, Phytochem. Anal., 2004, vol. 15, no. 5, pp. 275–279. doi 10.1002/pca.761

    CAS  Google Scholar 

  113. Blanc, M.-C., Bradesi, P., and Casanova, J., Identification and quantitative determination of eudesmanetype acids from the essential oil of Dittrichia viscosa sp. viscosa using 13C-NMR spectroscopy, Phytochem. Anal., 2005, vol. 16, no. 3, pp. 150–154. doi 10.1002/pca.834

    Article  PubMed  CAS  Google Scholar 

  114. Duquesnoy, E., Castola, V., and Casanova, J., Triterpenes in the hexane extract of leaves of Olea europaea L.: analysis using 13C-NMR spectroscopy, Phytochem. Anal., 2007, vol. 18, no. 4, pp. 347–353. doi 10.1002/pca.989

    Article  PubMed  CAS  Google Scholar 

  115. Ferrari, B., Castilho, P., Tomi, F., Rodrigues, A.I., Ceu Costa, M., and Casanova, J., Direct identification and quantitative determination of costunolide and dehydrocostuslactone in the fixed oil of Laurus novocanariensis by 13C-NMR spectroscopy, Phytochem. Anal., 2005, vol. 16, no. 2, pp. 104–107. doi 10.1002/pca.825

    CAS  Google Scholar 

  116. Duquesnoy, E., Paoli, M., Castola, V., Bighelli, A., and Casanova, J., Identification of taxanes in extracts from leaves of Taxus baccata L. using 13C-NMR spectroscopy, Phytochem. Anal., 2009, vol. 20, no. 3, pp. 246–252. doi 10.1002/pca.1121

    Article  PubMed  CAS  Google Scholar 

  117. Ratcliffe, R.G., Roscher, A., and Shachar-Hill, Y., Plant NMR spectroscopy, Prog. Nucl. Magn. Reson. Spectrosc., 2001, vol. 39, no. 4, pp. 267–300. doi 10.1016/S0079-6565(01)00035-8

    Article  Google Scholar 

  118. Lerche, M.H., Jensen, P.R., Karlsson, M., and Meier, S., NMR insights into the inner workings of living cells, Anal. Chem., 2015, vol. 87, no. 1, pp. 119–132. doi 10.1021/ac501467x

    Article  PubMed  CAS  Google Scholar 

  119. Krishnan, P., Kruger, N.J., and Ratcliffe, R.G., Metabolite fingerprinting and profiling in plants using NMR, J. Exp. Bot., 2005, vol. 56, no. 410, pp. 255–265. doi 10.1093/jxb/eri010

    Article  PubMed  CAS  Google Scholar 

  120. Kim, H.K., Choi, Y.H., and Verpoorte, R., NMRbased metabolomic analysis of plants, Nat. Protoc., 2010, vol. 5, pp. 536–549. doi 10.1038/nprot.2009.237

    Article  PubMed  CAS  Google Scholar 

  121. Bligny, R. and Douce, R., NMR and plant metabolism, Curr. Opin. Plant Biol., 2001, vol. 4, no. 3, pp. 191–196. doi 10.1016/S1369-5266(00)00160-6

    Article  PubMed  CAS  Google Scholar 

  122. Eisenreich, W. and Bacher, A., Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry Phytochemistry, 2007, vol. 68, no. 22, pp. 2799–2815. doi 10.1016/j.phytochem.2007.09.028

    PubMed  CAS  Google Scholar 

  123. Ristorcelli, D., Tomi, F., and Casanova, J., 13C-NMR as a tool for identification and enantiomeric differentiation of major terpenes exemplified by the essential oil of Lavandula stoechas L. ssp. stoechas, Flavour Fragrance J., 1998, vol. 13, no. 3, pp. 154–158. doi 10.1002/(SICI)1099-1026(199805/06)13:3<154::AID-FFJ713>3.0.CO;2-2

    CAS  Google Scholar 

  124. Baldovini, N., Tomi, F., and Casanova, J., Enantiomeric differentiation of bornyl acetate by 13C-NMR using a chiral lanthanide shift reagent, Phytochem. Anal., 2003, vol. 14, no. 4, pp. 241–244. doi 10.1002/pca.710

    Article  PubMed  CAS  Google Scholar 

  125. Ravid, U., Putievsky, E., Weinstein, V., and Ikan, R., Determination of the enantiomeric composition of natural flavouring agents by 1H-NMR spectroscopy, in Essential Oils and Aromatic Plants: Proceedings of the 15th International Symposium on Essential Oils, Held in Noordwijkerhout, The Netherlands, July 19–21, 1984, Springer Netherlands, 1985, pp. 135–138. doi 10.1007/978-94-009-5137-2_11

    Google Scholar 

  126. Lanfranchi, D.A., Tomi, F., and Casanova, J., Enantiomeric differentiation of atropine/hyoscyamine by 13C NMR spectroscopy and its application to Datura stramonium extract, Phytochem. Anal., 2010, vol. 21, no. 6, pp. 597–601. doi 10.1002/pca.1240

    Article  CAS  Google Scholar 

  127. Weinstein, V., Ikan, R., Ravid, U., and Putievsky, E., Determination of the enantiomeric composition of synthetic flavouring agents by 1H-NMR spectroscopy, in Essential Oils and Aromatic Plants: Proceedings of the 15th International Symposium on Essential Oils, Held in Noordwijkerhout, The Netherlands, July 19–21, 1984, Springer Netherlands, 1985, pp. 139–143. doi 10.1007/978-94-009-5137-2_12

    Google Scholar 

  128. Wenzel, T.J. and Wilcox, J.D., Chiral reagents for the determination of enantiomeric excess and absolute configuration using NMR spectroscopy, Chirality, 2003, vol. 15, no. 3, pp. 256–270. doi 10.1002/chir.10190

    Article  PubMed  CAS  Google Scholar 

  129. Wenzel, T.J. and Chisholm, C.D., Assignment of absolute configuration using chiral reagents and NMR spectroscopy, Chirality, 2011, vol. 23, no. 3, pp. 190–214. doi 10.1002/chir.20889

    Article  PubMed  CAS  Google Scholar 

  130. Silva, M.S., Recent advances in multinuclear NMR spectroscopy for chiral recognition of organic compounds, Molecules, 2017, vol. 22, no. 2. doi 10.3390/molecules22020247

    Google Scholar 

  131. Guiochon, G. and Guillemin, C., Quantitative Gas Chromatography for Laboratory Analyses and On-Line Process Control, Elsevier Science, 1988, p. 796.

    Google Scholar 

  132. Cuadros-Rodríguez, L., Bagur-González, M.G., Sánchez-Viñas, M., González-Casado, A., and Gómez-Sáez, A.M., Principles of analytical calibration/quantification for the separation sciences, J. Chromatogr. A, 2007, vol. 1158, nos. 1–2, pp. 33–46. doi 10.1016/j.chroma.2007.03.030

    Google Scholar 

  133. Ortiz, M. and Sarabia, L., Quantitative determination in chromatographic analysis based on n-way calibration strat egies, J. Chromatogr. A, 2007, vol. 1158, nos.1–2, pp. 94–110. doi 10.1016/j.chroma.2007.04.047

    Google Scholar 

  134. Hibbert, D.B., Systematic errors in analytical measurement results, J. Chromatogr. A, 2007, vol. 1158, nos, 1–2, pp. 25–32. doi 10.1016/j.chroma.2007.03.021

    Google Scholar 

  135. Maroto, A., Boqué, R., Riu, J., and Rius, F., Evaluating uncertainty in routine analysis, TrAC, Trends Anal. Chem., 1999, vol. 18, nos. 9–10, pp. 577–584. doi 10.1016/S0165-9936(99)00151-X

    Article  CAS  Google Scholar 

  136. Maroto, A., Riu, J., Boqué, R., and Rius, F.X., Estimating uncertainties of analytical results using information from the validation process, Anal. Chim. Acta, 1999, vol. 391, no. 2, pp. 173–185. doi 10.1016/S0003-2670(99)00111-7

    Article  CAS  Google Scholar 

  137. Meyer, V.R., Measurement uncertainty, J. Chromatogr. A, 2007, vol. 1158, nos. 1–2, pp. 15–24. doi 10.1016/j.chroma.2007.02.082

    Article  PubMed  CAS  Google Scholar 

  138. González, A.G. and Herrador, M. Á., A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles, TrAC, Trends Anal. Chem., 2007, vol. 26, no. 3, pp. 227–238. doi 10.1016/j.trac.2007.01.009

    Article  CAS  Google Scholar 

  139. Feinberg, M., Validation of analytical methods based on accuracy profiles, J. Chromatogr. A, 2007, vol. 1158, nos. 1–2, pp. 174–183. doi 10.1016/j.chroma.2007.02.021

    Article  PubMed  CAS  Google Scholar 

  140. Vanatta, L. and Coleman, D., Calibration, uncertainty, and recovery in the chromatographic sciences, J. Chromatogr. A, 2007, vol. 1158, nos. 1–2, pp. 47–60. doi 10.1016/j.chroma.2007.02.040

    Article  PubMed  CAS  Google Scholar 

  141. Bicchi, C., Liberto, E., Matteodo, M., Sgorbini, B., Mondello, L., Zellner, B.D., Costa, R., and Rubiolo, P., Quantitative analysis of essential oils: A complex task, Flavour Fragrance J., 2008, vol. 23, no. 6, pp. 382–391. doi 10.1002/ffj.1905

    Article  CAS  Google Scholar 

  142. IOFI Working Group on Methods of Analysis, Guidelines for the quantitative gas chromatography of volatile flavouring substances, from the Working Group on Methods of Analysis of the International Organization of the Flavor Industry (IOFI), Flavour Fragrance J., 2011, vol. 26, no. 5, pp. 297–299. doi 10.1002/ffj.2061

    Google Scholar 

  143. Stoliarov, B.V., Savinov, I.M., and Vitenberg, A.G., Rukovodstvo k prakticheskim rabotam po gazovoi khromatografii (A Guide to Practical Work on Gas Chromatography), Ioffe, B.V., Ed., Leningrad, 1988, 3rd ed.

    Google Scholar 

  144. Sakodynskii, K.I., Brazhnikov, V.V., Volkov, S.A., Zel’venskii, V.Iu., Gankina, E.S., and Shatts, V.D., Analiticheskaya khromatografiya (Analytical Chromatography), Moscow, 1993.

    Google Scholar 

  145. Stolyarov, B.V., Savinov, I.M., Vitenberg, A.G., Kartsova, L.A., Zenkevich, I.G., Kalmanovskii, V.I., and Kalambet, Yu.A., Prakticheskaya gazovaya i zhidkostnaya khromatografiya (Practical Gas and Liquid Chromatography), St. Petersburg, 2002.

    Google Scholar 

  146. Dietz, W.A., Response factors for gas chromatographic analyses, J. Chromatogr. Sci., 1967, vol. 5, no. 2, pp. 68–71. doi 10.1093/chromsci/5.2.68

    Article  CAS  Google Scholar 

  147. Raffa, K.F. and Steffeck, R.J., Computation of response factors for quantitative analysis of monoterpenes by gasliquid chromatography, J. Chem. Ecol., 1988, vol. 14, no. 5, pp. 1385–1390. doi 10.1007/BF01020142

    Article  PubMed  CAS  Google Scholar 

  148. Devaux, P. and Guiochon, G., Variations of the response of the electron capture detector with carrier gas flow-rate, J. Chromatogr. Sci., 1969, vol. 7, no. 9, pp. 561–564. doi 10.1093/chromsci/7.9.561

    Article  CAS  Google Scholar 

  149. Gislason, J. and Wharry, S.M., Relative molar response factors for thermal conductivity detectors, J. Chromatogr. Sci., 2000, vol. 38, no. 3, pp. 129–132. doi 10.1093/chromsci/38.3.129

    Article  PubMed  CAS  Google Scholar 

  150. Brazhnikov, V.V., Detektory dlya khromatografii (Detectors for Chromatography), Moscow, 1992.

    Google Scholar 

  151. Goedert, M. and Guiochon, G., A study of the sources of error in quantitative gas chromatography: Reproducibility of the response of a catharometer, J. Chromatogr. Sci., 1969, vol. 7, no. 6, pp. 323–339. doi 10.1093/chromsci/7.6.323

    Article  CAS  Google Scholar 

  152. Hoffmann, E.G., Calculation to relative molar response factors of thermal conductivity detectors in gas chromatography, Anal. Chem., 1962, vol. 34, no. 10, pp. 1216–1222. doi 10.1021/ac60190a010

    Article  CAS  Google Scholar 

  153. Herb, S.F., Magidman, P., and Riemenschneider, R.W., Observations on response factors for thermal conductivity detectors in GLC analysis of fatty acid methyl esters, J. Am. Oil Chem. Soc., 1967, vol. 44, no. 1, pp. 32–36. doi 10.1007/BF02908367

    Article  CAS  Google Scholar 

  154. Liu, F., Liang, Y., and Cao, C., QSPR modeling of thermal conductivity detection response factors for diverse organic compound, Chemom. Intell. Lab. Syst., 2006, vol. 81, no. 2, pp. 120–126. doi 10.1016/j.chemolab.2005.10.004

    Article  CAS  Google Scholar 

  155. Tong, H.Y. and Karasek, F.W., Flame ionization detector response factors for compound classes in quantitative analysis of complex organic mixtures Anal. Chem., 1984, vol. 56, no. 12, pp. 2124–2128. doi 10.1021/ac00276a033

    CAS  Google Scholar 

  156. Ackman, R.G., The flame ionization detector: further comments on molecular breakdown and fundamental group responses, J. Chromatogr. Sci., 1968, vol. 6, no. 10, pp. 497–501. doi 10.1093/chromsci/6.10.497

    Article  CAS  Google Scholar 

  157. Morvai, M., Pályka, I., and Molnár-Perl, I., Flame ionization detector response factors using the effective carbon number concept in the quantitative analysis of esters, J. Chromatogr. Sci., 1992, vol. 30, no. 11, pp. 448–452. doi 10.1093/chromsci/30.11.448

    Article  CAS  Google Scholar 

  158. Ulberth, F., Gabernig, R.G., and Schrammel, F., Flame-ionization detector response to methyl, ethyl, propyl, and butyl esters of fatty acids, J. Am. Oil Chem. Soc., 1999, vol. 76, no. 2, pp. 263–266. doi 10.1007/s11746-999-0228-7

    Article  CAS  Google Scholar 

  159. Kimball, B.A., Russell, J.H., Griffin, D.L., and Johnston, J.J., Response factor considerations for the quantitative analysis of western redcedar (Thuja plicata) foliar monoterpenes, J. Chromatogr. Sci., 2005, vol. 43, no. 5, pp. 253–258. doi 10.1093/chromsci/43.5.253

    Article  PubMed  CAS  Google Scholar 

  160. Scanlon, J.T. and Willis, D.E., Calculation of flame ionization detector relative response factors using the effective carbon number concept, J. Chromatogr. Sci., 1985, vol. 23, no. 8, pp. 333–340. doi 10.1093/chromsci/23.8.333

    Article  CAS  Google Scholar 

  161. Jones, F.W., Estimation of flame-ionization detector relative response factors for oligomers of alkyl and aryl ether polyethoxylates using the effective carbon number concept, J. Chromatogr. Sci., 1998, vol. 36, no. 5, pp. 223–226. doi 10.1093/chromsci/36.5.223

    Article  CAS  Google Scholar 

  162. Kállai, M., Veres, Z., and Balla, J., Response of flame ionization detectors to different homologous series, Chromatografia, 2001, vol. 54, no. 7, pp. 511–517. doi 10.1007/BF02491209

    Article  Google Scholar 

  163. Slemr, J., Slemr, F., D’Souza, H., and Partridge, R., Study of the relative response factors of various gas chromatograph–flame ionisation detector systems for measurement of C2–C9 hydrocarbons in air, J. Chromatogr. A, 2004, vol. 1061, no. 1, pp. 75–84. doi 10.1016/j.chroma.2004.10.037

    Article  PubMed  CAS  Google Scholar 

  164. Szulejko, J.E., Kim, Y.-H., and Kim, K.-H., Method to predict gas chromatographic response factors for the trace-level analysis of volatile organic compounds based on the effective carbon number concept, J. Sep. Sci., 2013, vol. 36, no. 20, pp. 3356–3365. doi 10.1002/jssc.201300543

    PubMed  CAS  Google Scholar 

  165. de Saint Laumer, J.-Y., Cicchetti, E., Merle, P., Egger, J., and Chaintreau, A., Quantification in gas chromatography: prediction of flame ionization detector response factors from combustion enthalpies and molecular structures, Anal. Chem., 2010, vol. 82, no. 15, pp. 6457–6462. doi 10.1021/ac1006574

    Google Scholar 

  166. Tissot, E., Rochat, S., Debonneville, C., and Chaintreau, A., Rapid GC-FID quantification technique without authentic samples using predicted response factors, Flavour Fragrance J., 2012, vol. 27, no. 4, pp. 290–296. doi 10.1002/ffj.3098

    Article  CAS  Google Scholar 

  167. de Saint Laumer, J.-Y., Leocata, S., Tissot, E., Baroux, L., Kampf, D.M., Merle, P., Boschung, A., Seyfried, M., and Chaintreau, A., Prediction of response factors for gas chromatography with flame ionization detection: Algorithm improvement, extension to silylated compounds, and application to the quantification of metabolites, J. Sep. Sci., 2015, vol. 38, no. 18, pp. 3209–3217. doi 10.1002/jssc.201500106

    Google Scholar 

  168. Cao, C. and Huo, P., Investigation of general expression to predict the molar response factor in the GC for monosubstituted alkanes, J. Chromatogr. Sci., 2007, vol. 45, no. 6, pp. 360–368. doi 10.1093/chromsci/45.6.360

    Article  PubMed  CAS  Google Scholar 

  169. Jalali–Heravi, M. and Fatemi, M., Prediction of flame ionization detector response factors using an artificial neural network, J. Chromatogr. A, 1998, vol. 825, no. 2, pp. 161–169. doi 10.1016/S0021-9673(98)00687-6

    Article  Google Scholar 

  170. Balaban, A.T., Highly discriminating distance-based topological index, Chem. Phys. Lett., 1982, vol. 89, no. 5, pp. 399–404. doi 10.1016/0009-2614(82)80009-2

    Article  CAS  Google Scholar 

  171. Jalali-Heravi, M. and Fatemi, M., Prediction of thermal conductivity detection response factors using an artificial neural network, J. Chromatogr. A, 2000, vol. 897, nos. 1–2, pp. 227–235. doi 10.1016/S0021-9673(00)00793-7

    Article  PubMed  CAS  Google Scholar 

  172. Dojahn, J.G., Wentworth, W., Deming, S.N., and Stearns, S.D., Determination of percent composition of a mixture analyzed by gas chromatography: Comparison of a helium pulsed-discharge photoionization detector with a flame ionization detector, J. Chromatogr. A, 2001, vol. 917, nos. 1–2, pp. 187–204. doi 10.1016/S0021-9673(01)00637-9

    Article  PubMed  CAS  Google Scholar 

  173. Khmel’nitskii, R.A. and Brodskii, E.S., Khromatomass-spektrometriia (Chromato-Mass Spectrometry), Moscow, 1984.

    Google Scholar 

  174. Ahn, J.-W., Pandey, S.K., and Kim, K.-H., Comparison of GC-MS calibration properties of volatile organic compounds and relative quantification without calibration standards, J. Chromatogr. Sci., 2011, vol. 49, no. 1, pp. 19–28. doi 10.1093/chrsci/49.1.19

    Article  CAS  Google Scholar 

  175. Göröcs, N., Mudri, D., Mátyási, J., and Balla, J., The determination of GC-MS relative molar responses of some n-alkanes and their halogenated analogs, J. Chromatogr. Sci., 2013, vol. 51, no. 2, pp. 138–145. doi 10.1093/chromsci/bms118

    Article  PubMed  CAS  Google Scholar 

  176. Jenke, D. and Odufu, A., Utilization of internal standard response factors to estimate the concentration of organic compounds leached from pharmaceutical packaging systems and application of such estimated concentrations to safety assessment, J. Chromatogr. Sci., 2012, vol. 50, no. 3, pp. 206–212. doi 10.1093/chromsci/bmr048

    Article  PubMed  CAS  Google Scholar 

  177. Davies, S.R., Alamgir, M., Chan, B.K.H., Dang, T., Jones, K., Krishnaswami, M., Luo, Y., Mitchell, P.S.R., Moawad, M., Swan, H., and Tarrant, G.J., The development of an efficient mass balance approach for the purity assignment of organic calibration standards, Anal. Bioanal. Chem., 2015, vol. 407, no. 26, pp. 7983–7993. doi 10.1007/s00216-015-8971-0

    Article  PubMed  CAS  Google Scholar 

  178. Davies, S.R., Jones, K., Goldys, A., Alamgir, M., Chan, B.K.H., Elgindy, C., Mitchell, P.S.R., Tarrant, G.J., Krishnaswami, M.R., Luo, Y., Moawad, M., Lawes, D., and Hook, J.M., Purity assessment of organic calibration standards using a combination of quantitative NMR and mass balance, Anal. Bioanal. Chem., 2015, vol. 407, no. 11, pp. 3103–3113. doi 10.1007/s00216-014-7893-6

    Article  PubMed  CAS  Google Scholar 

  179. Guillemin, C.L., Auricourt, M.F., Du, CrestJ., and Vermont, J., Accurate and rapid method for obtaining substance-specific correction factors usable in quantitative analysis by gas chromatography, J. Chromatogr. Sci., 1969, vol. 7, no. 8, 493–499. doi 10.1093/chromsci/7.8.493

    Google Scholar 

  180. Estell, R., Utsumi, S., and Cibils, A., Measurement of monoterpenes and sesquiterpenes in serum, plasma, and rumen fluid from sheep, Anim. Feed Sci. Technol., 2010, vol. 158, nos. 1–2, pp. 104–109. doi 10.1016/j.anifeedsci.2010.03.011

    Article  CAS  Google Scholar 

  181. González-Bravo, L., Marrero-Delange, D., and González-Guevara, J., Group method approach to the estimation of response factors of unavailable substances in quantitative gas chromatography, J. Chromatogr. A, 2000, vol. 888, nos. 1–2, pp. 159–173. doi 10.1016/S0021-9673(00)00541-0

    Article  PubMed  Google Scholar 

  182. Pauli, G.F., qNMR—a versatile concept for the validation of natural product reference compounds, Phytochem. Anal., 2001, vol. 12, no. 1, pp. 28–42. doi 10.1002/1099-1565(200101/02)12:1<28::AIDPCA549> 3.0.CO;2-D

    PubMed  CAS  Google Scholar 

  183. Singh, S. and Roy, R., The application of absolute quantitative 1H NMR spectroscopy in drug discovery and development, Expert Opin. Drug Discovery, 2016, vol. 11, no. 7, pp. 695–706. doi 10.1080/17460441.2016.118989

    Article  CAS  Google Scholar 

  184. Chauthe, S.K., Sharma, R.J., Aqil, F., Gupta, R.C., and Singh, I.P., Quantitative NMR: An applicable method for quantitative analysis of medicinal plant extracts and herbal products, Phytochem. Anal., 2012, vol. 23, no. 6, pp. 689–696. doi 10.1002/pca.2375

    Article  PubMed  CAS  Google Scholar 

  185. Simmler, C., Napolitano, J.G., McAlpine, J.B., Chen, S.-N., and Pauli, G.F., Universal quantitative NMR analysis of complex natural samples, Curr. Opin. Biotechnol., 2014, vol. 25, pp. 51–59. doi 10.1016/j.copbio.2013.08.004

    Article  PubMed  CAS  Google Scholar 

  186. Mo, H., Harwood, J., Zhang, S., Xue, Y., Santini, R., and Raftery, D.R., A quantitative measure of NMR signal receiving efficiency, J. Magn. Reson., 2009, vol. 200, no. 2, pp. 239–244. doi 10.1016/j.jmr.2009.07.004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  187. Buschhaus, C. and Jetter, R., Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces?, J. Exp. Bot., 2011, vol. 62, no. 3, pp. 841–853. doi 10.1093/jxb/erq366

    Article  PubMed  CAS  Google Scholar 

  188. Sweeney, E.G., Thompson, R.E., and Ford, D.C., GPC: Calibration of normal paraffins by carbon number, J. Chromatogr. Sci., 1970, vol. 8, no. 2, pp. 76–81. doi 10.1093/chromsci/8.2.76

    Article  CAS  Google Scholar 

  189. Stuckey, C.L., Simulated true boiling point curves by gas liquid chromatography-selection of response factors, J. Chromatogr. Sci., 1978, vol. 16, no. 10, pp. 482–487. doi 10.1093/chromsci/16.10.482

    Article  CAS  Google Scholar 

  190. Millar, A.A., Smith, M.A., and Kunst, L., All fatty acids are not equal: Discrimination in plant membrane lipids, Trends Plant Sci., 2000, vol. 5, no. 3, pp. 95–101. doi 10.1016/S1360-1385(00)01566-1

    Article  PubMed  CAS  Google Scholar 

  191. Walley, J.W., Kliebenstein, D.J., Bostock, R.M., and Dehesh, K., Fatty acids and early detection of pathogens, Curr. Opin. Plant Biol., 2013, vol. 16, no. 4, pp. 520–526. doi 10.1016/j.pbi.2013.06.011

    Article  PubMed  CAS  Google Scholar 

  192. Reina-Pinto, J.J. and Yephremov, A., Surface lipids and plant defenses, Plant Physiol. Biochem., 2009, vol. 47, no. 6, pp. 540–549. doi 10.1016/j.plaphy. 2009.01.004

    Article  PubMed  CAS  Google Scholar 

  193. Ivankin, A.N., Oliferenko, G.L., Kulikovskii, A.V., Chernukha, I.M., Semenova, A.A., Spiridonov, K.I., and Nasonova, V.V., Determination of unsaturated fatty acids with a migrating double bond in complex biological matrices by gas chromatography with flame ionization and mass spectrometry detection, J. Anal. Chem., 2016, vol. 71, no. 11, pp. 1131–1137. doi 10.1134/S1061934816110046

    Article  CAS  Google Scholar 

  194. Dodds, E.D., McCoy, M.R., Rea, L.D., and Kennish, J.M., Gas chromatographic quantification of fatty acid methyl esters: Flame ionization detection vs. electron impact mass spectrometry, Lipids, 2005, vol. 40, no. 4, pp. 419–428. doi 10.1007/s11745-006-1399-8

    Article  PubMed  CAS  Google Scholar 

  195. Diehl, J.W. and DiSanzo, F.P., Determination of total biodiesel fatty acid methyl, ethyl esters, and hydrocarbon types in diesel fuels by supercritical fluid chromatography-flame ionization detection, J. Chromatogr. Sci., 2007, vol. 45, no. 10, pp. 690–693. doi 10.1093/chromsci/45.10.690

    Article  PubMed  CAS  Google Scholar 

  196. Sobrado, L.A., Freije-Carrelo, L., Moldovan, M., Encinar, J.R., and Alonso, J.I.G., Comparison of gas chromatography-combustion-mass spectrometry and gas chromatography-flame ionization detector for the determination of fatty acid methyl esters in biodiesel without specific standards, J. Chromatogr. A, 2016, vol. 1457, pp. 134–143. doi 10.1016/j.chroma.2016.06.033

    Article  PubMed  CAS  Google Scholar 

  197. Cicchetti, E., Merle, P., and Chaintreau, A., Quantitation in gas chromatography: Usual practices and performances of a response factor database, Flavour Fragrance J., 2008, vol. 23, no. 6, pp. 450–459. doi 10.1002/ffj.1906

    Article  CAS  Google Scholar 

  198. Putievsky, E., Ravid, U., and Husain, S.Z., Differences in the yield of plant material, essential oils and their main components during the life cycle of Origanum vulgare L., in Essential Oils and Aromatic Plants: Proceedings of the 15th International Symposium on Essential Oils, Held in Noordwijkerhout, The Netherlands, July 19–21, 1984, Springer Netherlands, 1985, pp. 185–189. doi 10.1007/978-94-009-5137-2_2010.1007/978-94-009-5137-2_20

    Google Scholar 

  199. Brunke, E.-J. and Hammerschmidt, F.-J., Constituents of the essential oil of Salvia stenophylla—first identification of (+)-epi-α-bisabolol in nature, in Essential Oils and Aromatic Plants: Proceedings of the 15th International Symposium on Essential Oils, Held in Noordwijkerhout, The Netherlands, July 19–21, 1984, Springer Netherlands, 1985, pp. 145–150. doi 10.1007/978-94-009-5137-2_13

    Google Scholar 

  200. Verzár–Petri, G., Then, M., and Mészáros, S., Formation of essential oil in Clary Sage under different conditions, in Essential Oils and Aromatic Plants: Proceedings of the 15th International Symposium on Essential Oils, Held in Noordwijkerhout, The Netherlands, July 19–21, 1984, Springer Netherlands, 1985, pp. 199–202. doi 10.1007/978-94-009-5137-2_22

    Google Scholar 

  201. Leocata, S., Frank, S., Wang, Y., Calandra, M.J., and Chaintreau, A., Quantification of hydroperoxides by gas chromatography-flame ionization detection and predicted response factors, Flavour Fragrance J., 2016, vol. 31, no. 4, pp. 329–335. doi 10.1002/ffj.3324

    Article  CAS  Google Scholar 

  202. Rudbäck, J., Islam, N., Nilsson, U., and Karlberg, A.-T., A sensitive method for determination of allergenic fragrance terpene hydroperoxides using liquid chromatography coupled with tandem mass spectrometry, J. Sep. Sci., 2013, vol. 36, no. 8, pp. 1370–1378. doi 10.1002/jssc.201200855

    Article  PubMed  CAS  Google Scholar 

  203. Demyttenaere, J.C.R., The new European Union Flavouring Regulation and its impact on essential oils: Production of natural flavouring ingredients and maximum levels of restricted substances, Flavour Fragrance J., 2012, vol. 27, no. 1, pp. 3–12. doi 10.1002/ffj.2093

    Article  CAS  Google Scholar 

  204. Cachet, T., Brevard, H., Chaintreau, A., Demyttenaere, J., French, L., Gassenmeier, K., Joulain, D., Koenig, T., Leijs, H., Liddle, P., Loesing, G., Marchant, M., Merle, P., Saito, K., Schippa, C., Sekiya, F., and Smith, T., IOFI recommended practice for the use of predicted relative-response factors for the rapid quantification of volatile flavouring compounds by GC-FID, Flavour Fragrance J., 2016, vol. 31, no. 3, pp. 191–194. doi 10.1002/ffj.3311

    Article  CAS  Google Scholar 

  205. Cachet, T., Brevard, H., Cantergiani, E., Chaintreau, A., Demyttenaere, J., French, L., Gassenmeier, K., Joulain, D., Koenig, T., Leijs, H., Liddle, P., Loesing, G., Marchant, M., Saito, K., Scanlan, F., Schippa, C., Scotti, A., Sekiya, F., Sherlock, A., and Smith, T., Determination of volatile ‘restricted substances’ in flavourings and their volatile raw materials by GC-MS, Flavour Fragrance J., 2015, vol. 30, no. 2, pp. 160–164. doi 10.1002/ffj.3222

    Article  CAS  Google Scholar 

  206. Sousa, J.P.B., Brancalion, A.P., Souza, A.B., Turatti, I.C., Ambrosio, S.R., Furtado, N.A., Lopes, N.P., and Bastos, J.K., Validation of a gas chromatographic method to quantify sesquiterpenes in copaiba oils, J. Pharm. Biomed. Anal., 2011, vol. 54, no. 4, pp. 653–659. doi 10.1016/j.jpba.2010.10.006

    Article  PubMed  CAS  Google Scholar 

  207. Zhu, J.-J., An, Y.-W., Hu, G., Yin, G.-P., Zhang, Q.-W., and Wang, Z.-M., Simultaneous determination of multiple sesquiterpenes in Curcuma wenyujin herbal medicines and related products with one single reference standard, Molecules, 2013, vol. 18, no. 2, pp. 2110–2121. doi 10.3390/molecules18022110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  208. Joó, É., Dewulf, J., Demarcke, M., Amelynck, C., Schoon, N., Müller, J.-F., Šimpraga, M., Steppe, K., and Langenhove, H.V., Quantification of interferences in PTR-MS measurements of monoterpene emissions from Fagus sylvatica L. using simultaneous TD-GC-MS measurements, Int. J. Mass Spectrom., 2010, vol. 291, nos. 1–2, pp. 90–95. doi 10.1016/j.ijms.2010.01.018

    Google Scholar 

  209. Kang, J.H., Kim, M.E., Kim, Y.D., Rhee, Y.W., and Lee, S., Development of primary standard gas mixtures for monitoring monoterpenes (α-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) ambient levels (at 2 nmol/mol), J. Korean Soc. Atmos. Environ., 2016, vol. 32, no. 3, pp. 320–328. doi 10.5572/KOSAE.2016.32.3.320

    Google Scholar 

  210. Arh, G., Klasinc, L., Veber, M., and Pompe, M., Calibration of mass selective detector in non-target analysis of volatile organic compounds in the air, J. Chromatogr. A, 2011, vol. 1218, no. 11, pp. 1538–1543. doi 10.1016/j.chroma.2011.01.037

    Article  PubMed  CAS  Google Scholar 

  211. Faiola, C.L., Erickson, M.H., Fricaud, V.L., Jobson, B.T., and VanReken, T.M., Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept, Atmos. Meas. Tech., 2012, vol. 5, no. 8, pp. 1911–1923. doi 10.5194/amt-5-1911-2012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tkachev.

Additional information

Original Russian Text © A.V. Tkachev, 2017, published in Khimiya Rastitel’nogo Syr’ya, 2017, No. 3, pp. 5–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachev, A.V. Problems of the Qualitative and Quantitative Analysis of Plant Volatiles. Russ J Bioorg Chem 44, 813–833 (2018). https://doi.org/10.1134/S1068162018070142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162018070142

Keywords

Navigation