Skip to main content
Log in

Dependence of Ion Channel Properties Formed by Polyene Antibiotics Molecules on the Lactone Ring Structure

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The properties of ion channels formed in membranes by polyene antibiotics of various chemical structure of hydrophilic and hydrophobic chains are investigated. Small differences in a hydrophylic chain with a changed number of hydroxyl and carbonyl groups significantly influence the values of conductivity and selectivity of the polyene channel. The greater number of double bonds in a hydrophobic part of polyene molecules leads to the higher biological activity of antibiotics. Measurement of anion–cationic selectivity of the channels formed by polyenes showed that anionic selectivity, as well as conductivity of channels, decreases among antibiotics: amphotericin B, nystatin, candidin, mycoheptin, and levorin. The study of physical and chemical properties of the single and hybrid ion channels on the bilayer lipid membranes in the presence of polyene antibiotics makes possible to create a theoretically reasonable recommendation for the targeted synthesis of new antibiotics with the desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BLM:

bilayer lipid membranes

PA:

polyene antibiotics

References

  1. Borowski, E., Farmaco, 2000, vol. 55, pp. 206–208.

    Article  PubMed  CAS  Google Scholar 

  2. Kasumov Kh.M., Struktura i membrannaya funktsiya polienovykh makrolidnykh antibiotikov (Structure and Membrane Function of Polyenoic Macrolide Antibiotics), Moscow: Nauka, 2009.

    Google Scholar 

  3. DeKruyff, B. and Demel, R.A., Biochim. Biophys. Acta, 1974, vol. 339, pp. 57–70.

    Article  Google Scholar 

  4. Gray, K.C., Palacios, D.S., Dailey, I., Endo, M.M., Uno, B.E., Wilcock, B.C., and Burke, M.D., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 2234–2239.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zotchev, S.B., Curr. Med. Chem., 2003, vol. 10, pp. 211–223.

    Article  PubMed  CAS  Google Scholar 

  6. Palacios, D.S., Dailey, I., Siebert, D.M., Wilcock, B.C., and Burke, M.D., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 17, pp. 6733–6738.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dromer, F., Barbet, J., Bolard, J., Charreire, J., and Yeni, P., Antimicrob. Agents Chemother., 1990, vol. 34, pp. 2055–2060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ermishkin, L. and Zil’bershtein, A., in Itogi nauki i tekhniki. Biofizika membran. Ionnye kanaly i ikh modeli (Advances in Science and Technology. Biophysics of Membranes. Ion Channels and Their Models), Moscow, 1982, vol. 2, pp. 82–160.

    Google Scholar 

  9. Kasumov, Kh.M., Mekhtiev, N.Kh., and Karakozov, S.D., Biochim. Biophys. Acta, 1981, vol. 644, pp. 369–372.

    Article  PubMed  CAS  Google Scholar 

  10. Kasumov, Kh., Borisova, M., Ermishkin, L., Potseluyev, V., Silberstein, A., and Vainshtein, V., Biochim. Biophys. Acta, 1979, vol. 551, pp. 229–237.

    Article  PubMed  CAS  Google Scholar 

  11. Van Zutphen, H., Van Deenen, L.L.M., and Kinsky, S.C., Biochem. Biophys. Res. Commun., 1969, vol. 22, no. 4, pp. 393–398.

    Article  Google Scholar 

  12. Ibragimova, V.Kh., Alieva, I.N., and Kasumov, Kh.M., Biol. Membr., 2006, vol. 23, no. 6, pp. 493–502.

    CAS  Google Scholar 

  13. Ibragimova, V., Alieva, I., Kasumov, Kh., and Khutorsky, V., Biochim. Biophys. Acta, 2006, vol. 1758, pp. 29–37.

    Article  PubMed  CAS  Google Scholar 

  14. Récamier, K.S., Hernández-Gómez, A., González-Damián, J., and Ortega-Blake, I., J. Membr. Biol., 2010, vol. 237, no. 1, pp. 31–40.

    Article  PubMed  CAS  Google Scholar 

  15. Tevyashova, A.N., Olsufyeva, E.N., and Preobrashenskaya, M.N., Russ. Chem. Rev., 2015, vol. 84, no. 1, pp. 1–97.

    Article  CAS  Google Scholar 

  16. Cybulska, B., Bolard, J., Seksek, O., Czerwinski, A., and Borowski, E., Biochim. Biophys. Acta, 1995, vol. 1240, pp. 167–178.

    Article  PubMed  Google Scholar 

  17. Sultanova, G.G., Samedova, A.A., and Kasumov, Kh.M., Antibiot. Khimioter., 2007, vol. 52, nos. 9–10, pp. 9–13.

    PubMed  CAS  Google Scholar 

  18. Taylor, A.W., Costello, B.J., Hunter, P.A., Maclanand, W.S., and Shanks, C.T., J. Antobiot., 1993, vol. 46, pp. 486–493.

    Article  CAS  Google Scholar 

  19. Gary-Bobo, C.M., Biochimie, 1989, vol. 71, no. 1, pp. 37–47.

    Article  PubMed  CAS  Google Scholar 

  20. Mueller, P., Rudin, D.O., Tien, H.T., and Wescott, W.C., J. Phys. Chem., 1963, vol. 67, pp. 534–535.

    Article  CAS  Google Scholar 

  21. Folch, J., Leess, M., and Sloane-Stanley, G.H., J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. M. Kasumov.

Additional information

Original Russian Text © A.A. Samedova, T.P. Tagi-zade, Kh.M. Kasumov, 2018, published in Bioorganicheskaya Khimiya, 2018, Vol. 44, No. 3, pp. 333–342.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samedova, A.A., Tagi-zade, T.P. & Kasumov, K.M. Dependence of Ion Channel Properties Formed by Polyene Antibiotics Molecules on the Lactone Ring Structure. Russ J Bioorg Chem 44, 337–345 (2018). https://doi.org/10.1134/S1068162018030135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162018030135

Keywords

Navigation