Skip to main content
Log in

Simulation of the behavior of the cutting force during ultrasonic rotary machining of materials using structure-time fracture mechanics

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An analytical model is developed for the behavior of the cutting force during ultrasonic rotary polishing, and it is based on the concepts of dynamic fracture mechanics and the solution to the problem of impact surface fracture. The dependence of the threshold fracture energy obtained in the problem of erosion using a structure-time approach is used to construct the cutting force model. The dependences of the cutting force on the material feed rate and the rate of tool rotation are obtained, and the developed model is shown to be efficient to explain the effects observed in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kumabe, Vibration Cutting (Dzikke Sjuppan, Tokyo, 1979; Mashinostroenie, Moscow, 1985), translated from Japanese.

    Google Scholar 

  2. C. Tsutsumi, K. Okana, and T. Suto, J. Mater. Process. Technol. 37, 639 (1993).

    Article  Google Scholar 

  3. R. Singh and J. S. Khamba, J. Mater. Process. Technol. 173, 125 (2006).

    Article  Google Scholar 

  4. G. Ya, H. W. Qin, S. C. Yang, and Y. W. Xu, J. Mater. Process. Technol. 129, 182 (2002).

    Article  Google Scholar 

  5. N. J. Churi, Z. J. Pei, and C. Treadwell, Mach. Sci. Technol. 10, 301 (2006).

    Article  Google Scholar 

  6. C. Y. Khoo, Esah Hamzah, and Izman Sudin, Mekanikal, No. 25, 9 (2008).

    Google Scholar 

  7. Liu DeFu, W. L. Cong, Z. J. Pei, and Tang Yongjun, Int. J. Mach. Tools Manuf. 52, 77 (2012).

    Article  Google Scholar 

  8. P. Hu, J. M. Zhang, Z. J. Pei, and C. Treadwell, J. Mater. Process. Technol. 129, 339 (2002).

    Article  Google Scholar 

  9. Q. Wang, W. Cong, Z. J. Pei, H. Gao, and K. Renke, J. Manuf. Process. 11, 66 (2009).

    Article  Google Scholar 

  10. W. C. Cong, Z. J. Pei, Q. Feng, T. W. Deines, and C. Treadwell, J. Reinf. Plast. Comp. 31, 313 (2012).

    Article  Google Scholar 

  11. Yu. V. Petrov and A. A. Utkin, Sov. Mater. Sci. 25, 153 (1989).

    Article  Google Scholar 

  12. Yu. V. Petrov, Sov. Phys. Dokl. 36, 802 (1991).

    ADS  Google Scholar 

  13. Yu. V. Petrov, Dokl. Phys. 49, 246 (2004).

    Article  ADS  Google Scholar 

  14. N. F. Morozov and Y. V. Petrov. Problems of Dynamic Fracture in Solids (SPbSU, St.Petersburg, 1997).

    Google Scholar 

  15. G. A. Volkov, V. A. Bratov, A. A. Gruzdkov, V. I. Ba- bitsky, Yu. V. Petrov, and V. V. Silberschmidt, Shock Vib. 18, 333 (2011).

    Article  Google Scholar 

  16. V. I. Smirnov, Strength Mater. 39, 46 (2007).

    Article  Google Scholar 

  17. G. A. Volkov, N. A. Gorbushin, and Yu. V. Petrov, Mech. Solids 47, 491 (2012).

    Article  Google Scholar 

  18. K. Johnson, Contact Mechanics (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  19. Yu. V. Kolesnikov and E. M. Morozov, Contact Failure Mechanics (Nauka, Moscow, 1989).

    Google Scholar 

  20. W. L. Cong, Z. J. Pei, N. Mohanty, E. Van Vleet, and C. Treadwell, Manuf. Sci. E.-T. ASME 133, 034501 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Gorbushin.

Additional information

Original Russian Text © N.A. Gorbushin, G.A. Volkov, Yu.V. Petrov, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 6, pp. 65–70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbushin, N.A., Volkov, G.A. & Petrov, Y.V. Simulation of the behavior of the cutting force during ultrasonic rotary machining of materials using structure-time fracture mechanics. Tech. Phys. 59, 852–856 (2014). https://doi.org/10.1134/S1063784214060103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214060103

Keywords

Navigation