Skip to main content
Log in

Delayed Multineutron Emission in the Region of Heavy Calcium Isotopes

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A brief survey of self-consistent models used to perform global calculations of β-decay properties of neutron-rich nuclei is given. These models include the continuum quasiparticle randomphase approximation (CQRPA) based on the energy density functional (DF) proposed by Fayans and his colleagues (DF + CQRPA), relativistic quasiparticle random-phase approximation (RQRPA), and the finite-amplitude method (FAM). These models take into account allowed Gamow–Teller transitions and first-forbidden transitions. Models that allow for complex configurations beyond the QRPA framework are also analyzed. The β-decay properties of heavy calcium, potassium, and scandium isotopes in the vicinity of the N = 32 and 34 neutron subshells, which are new magic subshells for neutrons, are calculated on the basis of the self-consistent DF + CQRPA approach. The predicted high probability for two-neutron emission is found to be correlated with the anomalous nuclear radii measured for potassium and calcium isotopes in the region around N = 32. The results ofDF3 + CQRPA calculations are compared with their counterparts obtained within the self-consistent models implemented with the SkO’ Skyrme functional and the D3C* relativistic functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Goldansky, Nucl. Phys. A 19, 482 (1960).

    Article  Google Scholar 

  2. Yu. S. Lyutostansky, V. K. Sirotkin, and I. V. Panov, Phys. Lett. B 161, 9 (1985).

    Article  ADS  Google Scholar 

  3. A. Spyrou, Z. Kohley, T. Baumann, D. Bazin, B. A. Brown, G. Christian, P. A. De Young, J. E. Finck, N. Frank, E. Lunderberg, S. Mosby, W. A. Peters, A. Schiller, J. K. Smith, J. Snyder, M. J. Strongman, et al., Phys. Rev. Lett. 108, 102501 (2012)

    Article  ADS  Google Scholar 

  4. F. M. Marqués, N. A. Orr, N. L. Achouri, F. Delaunay, and J. Gibelin, Phys. Rev. Lett. 109, 239201 (2012).

    Article  ADS  Google Scholar 

  5. L. V. Grigorenko, J. S. Vaagen, and M. V. Zhukov, Phys. Rev. C 97, 034605 (2018).

    Article  ADS  Google Scholar 

  6. M. Pfützner, M. Karny, L. V. Grigorenko, and K. Riisager, Rev. Mod. Phys. 84, 567 (2012).

    Article  ADS  Google Scholar 

  7. C. A. Bertulani and V. Zelevinsky, Nature (London, U. K.) 532, 448 (2016).

    Article  ADS  Google Scholar 

  8. K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, M. Assie, H. Baba, T. Baba, D. Beaumel, M. Dozono, T. Fujii, N. Fukuda, S. Go, F. Hammache, E. Ideguchi, N. Inabe, et al., Phys. Rev. Lett. 116, 052501 (2016).

    Article  ADS  Google Scholar 

  9. A. M. Shirokov, G. Papadimitriou, A. I. Mazur, I. A. Mazur, R. Roth, and J. P. Vary, Phys. Rev. Lett. 117, 182502 (2016).

    Article  ADS  Google Scholar 

  10. Yu. E. Penionzhkevich and R. G. Kalpakchieva, Light Nuclei near the Neutron Stability Boundary (OIYaI, Dubna, 2016) [in Russian].

    Google Scholar 

  11. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  12. I. N. Borzov, Phys. Rev. C 67, 025802 (2003); Phys. Rev. C 71, 025801 (2005).

    Article  ADS  Google Scholar 

  13. A. P. Severyukhin, V. V. Voronov, I. N. Borzov, N. N. Arsenyev, and N. Van Giai, Phys. Rev. C 90, 044320 (2014).

    Article  ADS  Google Scholar 

  14. I. N. Borzov, Phys. At. Nucl. 79, 910 (2016).

    Article  Google Scholar 

  15. T. Marketin, L. Huther, and G. Martińez-Pinedo, Phys. Rev. C 93, 025805 (2016).

    Article  ADS  Google Scholar 

  16. T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76, 024318 (2007).

    Article  ADS  Google Scholar 

  17. M. T. Mustonen, T. Shafer, Z. Zenginerler, and J. Engel, Phys. Rev. C 90, 024308 (2014).

    Article  ADS  Google Scholar 

  18. M. T. Mustonen and J. Engel, Phys. Rev. C 93, 014304 (2016)

    Article  ADS  Google Scholar 

  19. T. Shafer, J. Engel, C. Fröhlich, G. C. McLaughlin, M. Mumpower, and R. Surman, Phys. Rev. C 94, 055802 (2016).

    Article  ADS  Google Scholar 

  20. Y. F. Niu, Z. M. Niu, G. Colò, and E. Vigezzi, Phys. Rev. Lett. 114, 142501 (2015).

    Article  ADS  Google Scholar 

  21. C. Robin and E. Litvinova, Eur. Phys. J. A 52, 205 (2016).

    Article  ADS  Google Scholar 

  22. A. P. Severyukhin, N. N. Arsenyev, I. N. Borzov, and E. O. Sushenok, Phys. Rev. C 95, 034314 (2017).

    Article  ADS  Google Scholar 

  23. E. O. Sushenok, A. P. Severyukhin, N. N. Arsen’ev, and I. N. Borzov, Phys. At. Nucl. 81, 24 (2018).

    Article  Google Scholar 

  24. J. I. Prisciandaro, P. F. Mantica, B. A. Brown, D. W. Anthony, M. W. Cooper, A. Garcia, D. E. Groh, A. Komives, W. Kumarasiri, P. A. Lofy, A. M. Oros-Peusquens, S. L. Tabor, and M. Wiedeking, Phys. Lett. B 510, 17 (2001).

    Article  ADS  Google Scholar 

  25. D. Steppenbeck, S. Takeuchi, N. Aoi, P. Doornenbal, M. Matsushita, H. Wang, H. Baba, N. Fukuda, S. Go, M. Honma, J. Lee, K. Matsui, S. Michimasa, T. Motobayashi, D. Nishimura, T. Otsuka, et al., Nature (London, U. K.) 502, 207 (2013).

    Article  ADS  Google Scholar 

  26. R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, et al., Nat. Phys. 12, 594 (2016).

    Article  Google Scholar 

  27. E. E. Saperstein, I. N. Borzov, and S. V. Tolokonnikov, JETP Lett. 104, 218 (2016).

    Article  ADS  Google Scholar 

  28. I. N. Borzov, in Proceedings of the International Symposium on Exotic Nuclei, Kazan, Russia, Sept. 04–10, 2016 (World Scientific, Singapore, 2017), p. 3.

    Google Scholar 

  29. J. Papuga, M. L. Bissell, K. Kreim, C. Barbieri, K. Blaum, M. De Rydt, T. Duguet, R. F. Garcia Ruiz, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nörtershäuser, M. M. Rajabali, R. Sánchez, N. Smirnova, et al., Phys. Rev. C 90, 034321 (2014).

    Article  ADS  Google Scholar 

  30. K. Kreim, M. L. Bissell, J. Papuga, K. Blaum, M. De Rydt, R. F. Garcia Ruiz, S. Goriely, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nörtershäuser, M. M. Rajabali, R. Sánchez Alarcón, H. H. Stroke, and D. T. Yordanov, Phys. Lett. B 731, 97 (2014).

    Article  ADS  Google Scholar 

  31. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Intersci., New York, 1967, transl. 1st ed).

    Google Scholar 

  32. V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).

    Article  ADS  Google Scholar 

  33. S. A. Fayans and V. A. Khodel’, JETP Lett. 17, 444 (1973).

    ADS  Google Scholar 

  34. E. K. Warburton, Phys. Rev. C 44, 233 (1991).

    Article  ADS  Google Scholar 

  35. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A 355, 117 (1996).

    ADS  Google Scholar 

  36. I. N. Borzov, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 584, 335 (1995).

    Article  ADS  Google Scholar 

  37. T. Duguet, P. Bonche, P.-H. Heenen, and J. Meyer, Phys. Rev. C 65, 014310 (2001).

    Article  ADS  Google Scholar 

  38. M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz, Phys. Rev. C 65, 054322 (2002).

    Article  ADS  Google Scholar 

  39. S. Perez-Martin and L. M. Robledo, Phys. Rev. C 78, 014304 (2008).

    Article  ADS  Google Scholar 

  40. S. Yoshida, Y. Utsuno, N. Shimizu, and T. Otsuka, Phys. Rev. C 97, 054321 (2018).

    Article  ADS  Google Scholar 

  41. V. G. Soloviev, Theory of Complex Nuclei (Pergamon, Oxford, 1976).

    Google Scholar 

  42. V. A. Kuzmin and V. G. Soloviev, J. Phys. G 10, 1507 (1984); J. Phys. G 11, 603 (1985).

    Article  ADS  Google Scholar 

  43. G. Colò, H. Sagawa, N. Van Giai, P. F. Bortignon, and T. Suzuki, Phys. Rev. C 57, 3049 (1998).

    Article  ADS  Google Scholar 

  44. Y. F. Niu, G. Colò, M. Brenna, P. F. Bortignon, and J. Meng, Phys. Rev. C 85, 034314 (2012).

    Article  ADS  Google Scholar 

  45. A. P. Severyukhin and H. Sagawa, Prog. Theor. Exp. Phys. 2013, 103D03 (2013).

    Article  Google Scholar 

  46. N. Van Giai, Ch. Stoyanov, and V. V. Voronov, Phys. Rev. C 57, 1204 (1998).

    Article  ADS  Google Scholar 

  47. A. P. Severuykhin, V. V. Voronov, and N. Van Giai, Prog. Theor. Phys. 128, 489 (2012).

    Article  ADS  Google Scholar 

  48. J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and R. Surman, Phys. Rev. C60, 014302 (1999).

    ADS  Google Scholar 

  49. S. P. Kamerdzhiuv, JETP Lett. 30, 500 (1979); Sov. J. Nucl. Phys. 38, 188 (1983).

    ADS  Google Scholar 

  50. V. I. Tselyaev, Sov. J. Nucl. Phys. 50, 780 (1989).

    Google Scholar 

  51. S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1 (2004).

    Article  ADS  Google Scholar 

  52. V. I. Tselyaev, Phys. Rev. C 75, 024306 (2007).

    Article  ADS  Google Scholar 

  53. E. V. Litvinova and V. I. Tselyaev, Phys. Rev. C 75, 054318 (2007).

    Article  ADS  Google Scholar 

  54. P. Papakonstantinou and R. Roth, Phys. Rev. C 81, 024317 (2010).

    Article  ADS  Google Scholar 

  55. A. Gottardo, R. Grzywacz, M. Madurga, G. de Angelis, D. Bazzacco, G. Benzoni, A. Boso, D. T. Yordanov, C. Delafosse, M.-C. Delattre, P. Van Duppen, A. Etilé, S. Franchoo, C. Gaulard, G. Georgiev, S. Go, et al., CERN-INTC-2016-012/INTC-P-425-ADD-1.

  56. M. Madurga, R. Surman, I. N. Borzov, R. Grzywacz, K. P. Rykaczewski, C. J. Gross, D. Miller, D. W. Stracener, J. C. Batchelder, N. T. Brewer, L. Cartegni, J. H. Hamilton, J. K. Hwang, S. H. Liu, S. V. Ilyushkin, C. Jost, et al., Phys. Rev. Lett. 109, 112501 (2012).

    Article  ADS  Google Scholar 

  57. R. Lozeva, H. Naídja, F. Nowacki, J. Dudek, A. Odahara, C.-B. Moon, S. Nishimura, P. Doornenbal, J.-M. Daugas, P.-A. Söderström, T. Sumikama, G. Lorusso, J. Wu, Z. Y. Xu, H. Baba, F. Browne, et al., Phys. Rev. C 93, 014316 (2016).

    Article  ADS  Google Scholar 

  58. P. Lee, C.-B. Moon, C. S. Lee, A. Odahara, R. Lozeva, A. Yagi, S. Nishimura, P. Doornenbal, G. Lorusso, P.-A. Söderström, T. Sumikama, H. Watanabe, T. Isobe, H. Baba, H. Sakurai, F. Browne, et al., Phys. Rev. C 92, 044320 (2015)

    Article  ADS  Google Scholar 

  59. B. Moon, C.-B. Moon, P.-A. Söderström, A. Odahara, R. Lozeva, B. Hong, F. Browne, H. S. Jung, P. Lee, C. S. Lee, A. Yagi, C. Yuan, S. Nishimura, P. Doornenbal, G. Lorusso, T. Sumikama, et al., Phys. Rev. C 95, 044322 (2017).

    Article  ADS  Google Scholar 

  60. W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and Xing Xu, Chin. Phys. C 41, 030002 (2017).

    Article  ADS  Google Scholar 

  61. G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, Chin. Phys. C 41, 030001 (2017).

    Article  ADS  Google Scholar 

  62. X. F. Yang, M. L. Bissell, K. Blaum, B. Cheal, S. Ettenauer, K. T. Flanagan, R. F. Garcia Ruiz, W. Gins, C. Gorges, H. Heylen, S. Kaufmann, Á. Koszorús, J. Krämer, M. Kowalska, K. M. Lynch, G. Neyens, et al., CERN-INTC-2015-050/INTCP-450

  63. X. F. Yang, J. Billowes, C. L. Binnersley, M. L. Bissell, P. Campbell, T. E. Cocolios, G. J. Farooq-Smith, R. P. de Groote, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, W. Gins, H. Heylen, Á. Koszorús, K. M. Lynch, B. A. Marsh, et al., CERN-INTC-2016-008/INTC-P-458.

  64. E. Caurier, R. Langanke, G. Martińez-Pinedo, F. Nowacki, and P. Vogel, Phys. Lett. 522, 240 (2001).

    Article  Google Scholar 

  65. F. Perrot, F. Maréchal, C. Jollet, Ph. Dessagne, J.-C. Angélique, G. Ban, P. Baumann, F. Benrachi, U. Bergmann, C. Borcea, A. Buţă, J. Cederkall, S. Courtin, J.-M. Daugas, L. M. Fraile, S. Grévy, et al., Phys. Rev. C 74, 014313 (2006).

    Article  ADS  Google Scholar 

  66. P. Möller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67, 055802 (2003).

    Article  ADS  Google Scholar 

  67. N. A. Orr, EPJ Web Conf. 113, 06011 (2016).

    Article  Google Scholar 

  68. A. Poves, J. Retamosa, M. J. G. Borge, and O. Tengblad, Z. Phys. A 347, 227 (1994).

    Article  ADS  Google Scholar 

  69. I. N. Borzov, in Summary Report of the 3rd Research Coordination Meeting on Development of a Reference Database for ß-Delayed Neutron Emission (IAEA, Vienna, 2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Borzov.

Additional information

The article is devoted to the memory of Eduard Saperstein

Original Russian Text © I.N. Borzov, 2018, published in Yadernaya Fizika, 2018, Vol. 81, No. 6, pp. 627–641.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzov, I.N. Delayed Multineutron Emission in the Region of Heavy Calcium Isotopes. Phys. Atom. Nuclei 81, 680–694 (2018). https://doi.org/10.1134/S1063778818060066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818060066

Navigation