Skip to main content
Log in

Jet Quenching for Heavy Flavors in AA and pp Collisions

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We perform a global analysis of experimental data on jet quenching for heavy flavors for scenarios with and without quark-gluon plasma formation in pp collisions. We find that the theoretical predictions for the nuclear modification factor RAA for heavy flavors at the LHC energies are very similar for these scenarios, and the results for RAA and \({{{v}}_{2}}\) agree reasonably with the LHC data. The agreement with data at the RHIC top energy becomes somewhat better for the intermediate scenario, in which the quark-gluon plasma formation in pp collisions occurs only at the LHC energies. Our fits to heavy flavor RAA show that description of jet quenching for heavy flavors requires somewhat bigger αs than data on jet quenching for light hadrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Notes

  1. Contrary to the original LCPI form of the induced gluon spectrum in terms of the singular Green functions [2], the method of [31] reduces calculation of the gluon spectrum to solving an initial boundary value problem with a smooth initial condition, which is convenient for numerical calculations.

  2. Note that we ignore the BDe process since it gives a negligible contribution [45].

  3. For HFEs we use a smaller lower limit of pT since for HFEs, due to the presence of the additional FF De/M, the ratio of the typical transverse momentum of the original heavy quarks to the transverse momentum of the final detected particle for HFEs becomes bigger by a factor of ~2 than that for heavy mesons.

REFERENCES

  1. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigné, and D. Schiff, Nucl. Phys. B 483, 291 (1997).

    Article  ADS  Google Scholar 

  2. B. G. Zakharov, JETP Lett. 63, 952 (1996).

    Article  ADS  Google Scholar 

  3. U. A. Wiedemann, Nucl. Phys. A 690, 731 (2001).

    Article  ADS  Google Scholar 

  4. M. Gyulassy, P. Lévai, and I. Vitev, Nucl. Phys. B 594, 371 (2001).

    Article  ADS  Google Scholar 

  5. P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 0206, 030 (2002).

  6. R. Baier, D. Schiff, and B. G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000).

    Article  ADS  Google Scholar 

  7. J. D. Bjorken, Fermilab Preprint 82/59-THY (1982, unpublished).

  8. B. G. Zakharov, JETP Lett. 86, 444 (2007).

    Article  ADS  Google Scholar 

  9. W. Broniowski and W. Florkowski, Phys. Rev. C 65, 024905 (2002).

  10. V. Khachatryan et al. (CMS Collab.), J. High Energy Phys. 1009, 091 (2010).

  11. G. Aad et al. (ATLAS Collab.), Phys. Rev. Lett. 116, 172301 (2016).

  12. J. Adam et al. (ALICE Collab.), Nat. Phys. 13, 535 (2017).

    Google Scholar 

  13. R. Campanini, G. Ferri, and G. Ferri, Phys. Lett. B 703, 237 (2011).

    Article  ADS  Google Scholar 

  14. L. van Hove, Phys. Lett. B 118, 138 (1982).

    Article  ADS  Google Scholar 

  15. R. Field, Acta Phys. Polon. B 42, 2631 (2011).

    Article  Google Scholar 

  16. B. G. Zakharov, Phys. Rev. Lett. 112, 032301 (2014).

  17. S. Tripathy (for ALICE Collab.), arXiv: 2103.07218.

  18. B. G. Zakharov, JETP Lett. 116, 347 (2022).

    Article  ADS  Google Scholar 

  19. B. G. Zakharov, J. High Energy Phys., No. 09, 087 (2021).

  20. A. Bazavov et al., Phys. Rev. D 98, 054511 (2018).

  21. J. Braun and H. Gies, Phys. Lett. B 645, 53 (2007).

    Article  ADS  Google Scholar 

  22. L. Apolin_ario, Y.-J. Lee, and M. Winn, Prog. Part. Nucl. Phys. 127, 103990 (2022).

  23. Y. L. Dokshitzer and D. E. Kharzeev, Phys. Lett. B 519, 199 (2001).

    Article  ADS  Google Scholar 

  24. B. I. Abelev et al. (STAR Collab.), Phys. Rev. Lett. 98, 192301 (2007);

  25. Phys. Rev. Lett. 106, 159902(E) (2011).

  26. S. S. Adler et al. (PHENIX Collab.), Phys. Rev. Lett. 96, 032301 (2006).

  27. P. Aurenche and B. G. Zakharov, JETP Lett. 90, 237 (2009).

    Article  ADS  Google Scholar 

  28. B. G. Zakharov, JETP Lett. 96, 616 (2013).

    Article  ADS  Google Scholar 

  29. B. G. Zakharov, J. Phys. G 40, 085003 (2013).

  30. B. G. Zakharov, JETP Lett. 103, 363 (2016).

    Article  ADS  Google Scholar 

  31. B. G. Zakharov, J. Exp. Theor. Phys. 129, 521 (2019).

    Article  ADS  Google Scholar 

  32. B. G. Zakharov, JETP Lett. 80, 617 (2004).

    Article  ADS  Google Scholar 

  33. S. Shi, J. Liao, and M. Gyulassy, Chin. Phys. C 43, 044101 (2019).

  34. D. Zigic, B. Ilic, Mark Djordjevic, and Magd. Djordjevic, Phys. Rev. C 101, 064909 (2020).

  35. B. Blok and K. Tywoniuk, Eur. Phys. J. C 79, 560 (2019).

    Article  ADS  Google Scholar 

  36. B. Blok, Eur. Phys. J. C 80, 729 (2020).

    Article  ADS  Google Scholar 

  37. B. Blok, Eur. Phys. J. C 81, 832 (2021).

    Article  ADS  Google Scholar 

  38. R. Rapp, P. B. Gossiaux, A. Andronic, R. Averbeck, S. Masciocchi, A. Beraudo, E. Bratkovskaya, P. Braun-Munzinger, S. Cao, A. Dainese, S. K. Das, M. Djordjevic, V. Greco, M. He, H. van Hees, et al., Nucl. Phys. A 979, 21 (2018).

    Article  ADS  Google Scholar 

  39. Zhong-Bo Kang, F. Ringer, and I. Vitev, J. High Energy Phys., No. 03, 146 (2017).

  40. P. Lévai and U. Heinz, Phys. Rev. C 57, 1879 (1998).

    Article  ADS  Google Scholar 

  41. B. G. Zakharov, JETP Lett. 88, 781 (2008).

    Article  ADS  Google Scholar 

  42. B. G. Zakharov, J. Phys. G 48, 055009 (2021).

  43. S. Kretzer, H. L. Lai, F. Olness, and W. K. Tung, Phys. Rev. D 69, 114005 (2004).

  44. K. J. Eskola, H. Paukkunen, and C. A. Salgado, J. High Energy Phys. 0904, 065 (2009).

  45. T. Sjostrand, L. Lonnblad, S. Mrenna, and P. Skands, arXiv: hep-ph/0308153.

  46. M. Cacciari, P. Nason, and R. Vogt, Phys. Rev. Lett. 95, 122001 (2005).

  47. A. H. Mahmood et al. (CLEO Collab.), Phys. Rev. D 70, 032003 (2004).

  48. R. Poling, Invited Talk at 4th Flavor Physics and CP Violation Conference, Vancouver, British Columbia, Canada, Apr. 9–12, 2006.

  49. B. Aubert et al. (BaBar Collab.), Phys. Rev. D 75, 072002 (2007).

  50. O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510 (2005).

  51. R. Baier, Y. L. Dokshitzer, A. H. Mueller, and D. Schiff, J. High Energy Phys. 0109, 033 (2001).

  52. J. D. Bjorken, Phys. Rev. D 27, 140 (1983).

    Article  ADS  Google Scholar 

  53. D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001).

    Article  ADS  Google Scholar 

  54. B. G. Zakharov, J. Exp. Theor. Phys. 124, 860 (2017).

    Article  ADS  Google Scholar 

  55. B. G. Zakharov, Eur. Phys. J. C 78, 427 (2018).

    Article  ADS  Google Scholar 

  56. B. Müller and K. Rajagopal, Eur. Phys. J. C 43, 15 (2005).

    Article  ADS  Google Scholar 

  57. S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, J. High Energy Phys. 1011, 077 (2010).

  58. J. Adam et al. (ALICE Collab.), J. High Energy Phys., No. 03, 081 (2016).

  59. Tech. Rep. CMSPAS-HIN-15-005 (CERN, Geneva, 2015). https://cds.cern.ch/record/2055466/_les/HIN-15-005-pas.pdf.

  60. S. Acharya et al. (ALICE Collab.), J. High Energy Phys., No. 01, 174 (2022).

  61. A. M. Sirunyan et al. (CMS Collab.), Phys. Lett. B 782, 474 (2018).

    Article  ADS  Google Scholar 

  62. J. Adam et al. (ALICE Collab.), Phys. Lett. B 771, 467 (2017).

    Article  ADS  Google Scholar 

  63. S. Acharya et al. (ALICE Collab.), Phys. Lett. B 804, 135377 (2020).

  64. A. M. Sirunyan et al. (CMS Collab.), Phys. Rev. Lett. 119, 152301 (2017).

  65. S. Acharya et al. (ALICE Collab.); arXiv: 2202.00815.

  66. A. M. Sirunyan et al. (CMS Collab.), Phys. Rev. Lett. 123, 022001 (2019).

  67. J. Park (for the ALICE Collab.), PoS (HardProbes2020), 034 (2021). https://doi.org/10.22323/1.387.0034

  68. D. Li, F. Si, Y. Zhao, P. Zhou, Y. Zhang, X. Li, and C. Yang, Phys. Lett. B 832, 137249 (2022).

  69. S. Acharya et al. (ALICE Collab.), J. High Energy Phys., No. 02, 150 (2019).

  70. A. M. Sirunyan et al. (CMS Collab.), Phys. Lett. B 816, 136253 (2021).

  71. Tech. Rep. CMS-PAS-HIN-21-003 (CERN, Geneva, 2021). https://cds.cern.ch/record/2806157/_les/HIN-21-003-pas.pdf.

  72. J. Adam et al. (STAR Collab.), Phys. Rev. C 99, 034908 (2019).

  73. A. Adare et al. (PHENIX Collab.), Phys. Rev. C 84, 044905 (2011).

  74. M. S. Abdallah et al. (STAR Collab.), arXiv: 2111.14615.

  75. B. G. Zakharov, JETP Lett. 112, 681 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the state program 0033-2019-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Zakharov.

Ethics declarations

The author declares that he has no conflicts of interest.

APPENDIX

APPENDIX

In this appendix we give, for the convenience of the reader, formulas for calculation of the gluon emission x-spectrum dP/dx. We use the representation of the induced gluon spectrum obtained in [31] with the prescription of [74] for incorporating the T-dependent running αs. For a fast quark with momentum along the z-axis produced at z = 0 in the matter of thickness L, dP/dx has the form

$$\frac{{dP}}{{dx}} = \int\limits_0^L {dzn(z)\frac{{d\sigma _{{{\text{eff}}}}^{{BH}}(x,z)}}{{dx}},} $$
(11)

where n(z) is the medium number density, d\(\sigma _{{{\text{eff}}}}^{{BH}}\)/dx is an effective Bethe-Heitler cross section for qgq process, given by

$$\begin{gathered} \frac{{d\sigma _{{{\text{eff}}}}^{{BH}}(x,z)}}{{dx}} = - \frac{{P_{q}^{g}(x)}}{{\pi M}} \\ \times \operatorname{Im} \int\limits_0^z {d\xi \sqrt {{{\alpha }_{s}}(Q(\xi ),T(z - \xi )){{\alpha }_{s}}(Q(\xi ),T(z + \xi ))} } \\ {{\left. { \times \exp \left( { - i\frac{\xi }{{{{L}_{f}}}}} \right)\frac{\partial }{{\partial \rho }}\left( {\frac{{F(\xi ,\rho )}}{{\sqrt \rho }}} \right)} \right|}_{{\rho = 0}}}. \\ \end{gathered} $$
(12)

Here \(P_{q}^{g}\)(x) = (4/3)[1 + (1 – x)2]/x is the ordinary pQCD qg splitting function, M = Eqx(1 – x), Lf = 2M/\({{\epsilon }^{2}}\), \({{\epsilon }^{2}}\) = \(m_{q}^{2}\)x2 + \(m_{g}^{2}\)(1 – x), Q2(ξ) = aM/ξ with a ≈ 1.85 [8], F is the solution to the radial Schrödinger equation

$$\begin{gathered} i\frac{{\partial F(\xi ,\rho )}}{{\partial \xi }} = \left[ { - \frac{1}{{2M}}{{{\left( {\frac{\partial }{{\partial \rho }}} \right)}}^{2}}} \right. \\ \left. {_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}}}} + \,{v}(\rho ,x,z - \xi ) + \frac{{4{{m}^{2}} - 1}}{{8M{{\rho }^{2}}}}} \right]F(\xi ,\rho ) \\ \end{gathered} $$
(13)

with the azimuthal quantum number m = 1, and the boundary condition F(ξ = 0, ρ) = \(\sqrt \rho {{\sigma }_{{gq\bar {q}}}}\)(ρ, x, z)\(\epsilon \)K1(\(\epsilon \)ρ) at ξ = 0 (K1 is the Bessel function). The potential \({v}\) reads

$${v}(\rho ,x,z) = - i\frac{{n(z){{\sigma }_{{gq\bar {q}}}}(\rho ,x,z)}}{2},$$
(14)

where \({{\sigma }_{{gq\bar {q}}}}\)(ρ, x, z) is the three-body cross section of interaction of the gq\(\bar {q}\) system with a medium constituent located at z (ρ is the transverse distance between g and the final quark q). In the transverse plane \(\bar {q}\) is located at the center of mass of the gq pair. The \({{\sigma }_{{gq\bar {q}}}}\) can be written via the local dipole cross section \({{\sigma }_{{q\bar {q}}}}\)(ρ, z) (for the color singlet \(q\bar {q}\) pair)

$$\begin{gathered} {{\sigma }_{{gq\bar {q}}}}(\rho ,x,z){{{\text{|}}}_{{q \to gq}}} \\ = \frac{9}{8}[{{\sigma }_{{q\bar {q}}}}(\rho ,z) + {{\sigma }_{{q\bar {q}}}}((1 - x)\rho ,z)] - \frac{1}{8}{{\sigma }_{{q\bar {q}}}}(x\rho ,z). \\ \end{gathered} $$
(15)

In the two-gluon approximation the dipole cross section reads

$${{\sigma }_{{q\bar {q}}}}(\rho ,z) = {{C}_{T}}{{C}_{F}}\int {d{\mathbf{q}}\alpha _{s}^{2}(q,T(z))\frac{{[1 - \exp (i{\mathbf{q}}\rho )]}}{{{{{[{{q}^{2}} + \mu _{D}^{2}(z)]}}^{2}}}}} ,$$
(16)

where CF, T are the color Casimir for the quark and thermal parton (quark or gluon), and μD(z) is the local Debye mass.

For the QGP fireball in AA collisions the coordinate z coincides with the proper time τ, i.e. in terms of the real fireball number density, nf(ρ, τ), we have n(z) = nf(ρj(ρj0, τ), τ), where ρj0 is the jet production transverse coordinate, and ρj(ρj0, τ) = ρj0 + τpT/|pT| is the jet trajectory. We use the approximation of a uniform fireball. In this case, inside the fireball, the function nf(ρ, τ) does not depend on the jet production point. This greatly reduces the computational cost, since one can tabulate the L-dependence of the induced gluon spectrum once, and then use it for calculations of the FFs for arbitrary jet geometry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, B.G. Jet Quenching for Heavy Flavors in AA and pp Collisions. J. Exp. Theor. Phys. 136, 572–584 (2023). https://doi.org/10.1134/S1063776123050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123050059

Navigation