Skip to main content
Log in

Stability of a free-standing liquid-crystal film: The measurement of the interaction between the film surfaces

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The interaction energy of the surfaces of a free-standing liquid-crystal film has been determined. The measurements are performed in a smectic phase below the melting temperature of a bulk sample T C, in the temperature range of structural instability of thin films at T > T C, and in a quasi-smectic phase at T > T C. Two modes of smectic-layer motion in the film are detected: they lead to film thinning at T > T C and film thickening at a low temperature. The measurement results are discussed in terms of recent theoretical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pieranski, L. Bieliard, J.-Ph. Tournelles, et al., Physica A (Amsterdam) 194, 364 (1993).

    ADS  Google Scholar 

  2. W. H. de Jeu, B. I. Ostrovskii, and A. N. Shalaginov, Rev. Mod. Phys. 75, 181 (2003).

    Article  ADS  Google Scholar 

  3. T. Stoebe, P. Mach, and C. C. Huang, Phys. Rev. Lett. 73, 1384 (1994).

    Article  ADS  Google Scholar 

  4. E. I. Demikhov, V. K. Dolganov, and K. P. Meletov, Phys. Rev. E 52, R1285 (1995).

    Article  ADS  Google Scholar 

  5. V. K. Dolganov, E. I. Demikhov, R. Fouret, and C. Gors, Phys. Lett. A 220, 242 (1996).

    Article  ADS  Google Scholar 

  6. S. Pankratz, P. M. Johnson, H. T. Nguyen, and C. C. Huang, Phys. Rev. E 58, R2721 (1998).

    Article  ADS  Google Scholar 

  7. E. A. L. Mol, G. C. L. Wong, J. M. Petit, et al., Physica B (Amsterdam) 248, 191 (1998).

    ADS  Google Scholar 

  8. S. Pankratz, P. M. Johnson, R. Holyst, and C. C. Huang, Phys. Rev. E 60, R2456 (1999).

    Article  ADS  Google Scholar 

  9. S. Pankratz, P. M. Johnson, A. Paulson, and C. C. Huang, Phys. Rev. E 61, 6689 (2000).

    Article  ADS  Google Scholar 

  10. P. Cluzeau, G. Joly, H. T. Nguyen, et al., Phys. Rev. E 62, R5899 (2000).

    Article  ADS  Google Scholar 

  11. A. Zywocinski, F. Picano, P. Oswald, and J. C. Geminard, Phys. Rev. E 62, 8133 (2000).

    Article  ADS  Google Scholar 

  12. L. V. Mirantsev, Phys. Lett. A 205, 412 (1995).

    Article  ADS  Google Scholar 

  13. Y. Martinez-Raton, A. M. Somoza, L. Mederos, and D. E. Sullivan, Phys. Rev. E 55, 2030 (1997).

    Article  ADS  Google Scholar 

  14. E. E. Gorodetskii, E. S. Pikina, and V. E. Podnek, Zh. Éksp. Teor. Fiz. 115, 61 (1999) [JETP 88, 35 (1999)].

    Google Scholar 

  15. F. Picano, P. Oswald, and E. Kats, Phys. Rev. E 63, 021705 (2001).

  16. A. N. Shalaginov and D. E. Sullivan, Phys. Rev. E 63, 031704 (2001).

    Google Scholar 

  17. L. V. Mirantsev, Phys. Rev. E 63, 061701 (2001).

    Google Scholar 

  18. A. N. Shalaginov and D. E. Sullivan, Phys. Rev. E 65, 031715 (2002).

    Google Scholar 

  19. A. Poniewierski, P. Oswald, and R. Holyst, Langmuir 18, 1511 (2002).

    Article  Google Scholar 

  20. B. M. Ocko, A. Braslau, P. S. Pershan, et al., Phys. Rev. Lett. 57, 94 (1986).

    Article  ADS  Google Scholar 

  21. P. Cluzeau, G. Joly, H. T. Nguyen, et al., Liq. Cryst. 29, 505 (2002).

    Article  Google Scholar 

  22. L. V. Mirantsev, Liq. Cryst. 27, 491 (2000).

    Article  Google Scholar 

  23. P. Cluzeau, M. Ismaili, A. Anakhar, et al., Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 362, 185 (2001).

    Article  Google Scholar 

  24. J. R. Lalanne, C. Destrade, H. T. Nguyen, and J. P. Marcerou, Phys. Rev. A 44, 6632 (1991).

    Article  ADS  Google Scholar 

  25. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).

    Google Scholar 

  26. J. C. Géminard, R. Holyst, and P. Oswald, Phys. Rev. Lett. 78, 1924 (1997).

    Article  ADS  Google Scholar 

  27. H. Schüring and R. Stannarius, Langmuir 18, 9735 (2002).

    Article  Google Scholar 

  28. P. V. Dolganov, P. Cluzeau, G. Joly, et al., Phys. Rev. E 72, 031713 (2005).

  29. P. Oswald, F. Picano, and F. Caillier, Phys. Rev. E 68, 061701 (2003).

    Google Scholar 

  30. P. Mach, C. C. Huang, T. Stoebe, et al., Langmuir 14, 4330 (1998).

    Article  Google Scholar 

  31. M. Veum, C. Pettersen, P. Mach, et al., Phys. Rev. E 61, R2192 (2000).

    Article  ADS  Google Scholar 

  32. R. Jaquet and F. Schneider, Phys. Rev. E 67, 021707 (2003).

    Google Scholar 

  33. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982).

    Google Scholar 

  34. P. G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Article  ADS  Google Scholar 

  35. P. Ziherl, Phys. Rev. E 61, 4636 (2000).

    Article  ADS  Google Scholar 

  36. B. Markun and S. Žumer, Phys. Rev. E 73, 031702 (2006).

  37. I. N. de Oliveira and M. L. Lyra, Phys. Rev. E 70, 050702(R) (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kats.

Additional information

Original Russian Text © P.V. Dolganov, H.T. Nguyen, G. Joly, E.I. Kats, V.K. Dolganov, P. Cluzeau, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 3, pp. 756–764.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolganov, P.V., Nguyen, H.T., Joly, G. et al. Stability of a free-standing liquid-crystal film: The measurement of the interaction between the film surfaces. J. Exp. Theor. Phys. 105, 665–672 (2007). https://doi.org/10.1134/S1063776107090257

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107090257

PACS numbers

Navigation