Skip to main content
Log in

Regulation of potato tuber dormancy and sprouting

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Dormancy is the final stage of tuber life serving to preserve tubers as organs of vegetative reproduction under unfavorable growth conditions. Since the duration of potato tuber dormancy and their sprouting time have significant economic importance, much attention is given to the study of the regulation of these processes. This review considers metabolite, genetic, and hormonal aspects of regulation of potato (Solanum tuberosum L.) tuber dormancy and sprouting. Particular attention is paid to the relationship between processes occurring in different parts of the tuber: its storage tissues and buds. The interaction of hormonal and metabolite (carbohydrate) regulation of dormancy and sprouting is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AGPase:

ADP-glucose pyrophosphorylase

BA:

benzyladenine

BS:

brassinosteroids

CF:

carboxyfluoresceine

CK:

cytokinins

JA:

jasmonic acid

SP:

starch phosphorylase

T6P:

trehalose-6-phosphate

TDF:

transcriptionally derived fragments

References

  1. Chailakhyan, M.Kh., Fotoperiodicheskaya i gormonal’naya regulyatsiya klubneobrazovaniya u rastenii (Photoperiodic and Hormonal Control of Tuber Formation in Plants), Moscow: Nauka, 1984.

    Google Scholar 

  2. Ewing, E.E. and Struik, P.C., Tuber Formation in Potato: Induction, Initiation and Growth, Hortic. Rev., 1992, vol. 14, pp. 89–198.

    Google Scholar 

  3. Aksenova, N.P., Konstantinova, T.N., Golyanovskaya, S.A., Sergeeva, L.I., and Romanov, G.A., Hormonal Regulation of Tuber Formation of Potato Plants, Russ. J. Plant Physiol., 2012, vol. 59, pp. 451–466.

    Article  CAS  Google Scholar 

  4. Ozeretskovskaya, O.L., Cellular and Molecular Mechanisms of Immunity in Potato Plants, Regulyatsiya rosta i razvitiya kartofelya (Regulation of Growth and Development in Potato Plants), Chailakhyan, M.Kh. and Mokronosov, A.T., Eds., Moscow: Nauka, 1990, pp. 131–137.

    Google Scholar 

  5. Sukhova, L.S. and Korableva, N.P., Regulation of Potato Tuber Dormancy and Their Resistance to Diseases via Hormonal Balance Modified by Ethylene Donors, Regulyatsiya rosta i razvitiya kartofelya (Regulation of Growth and Development of Potato Plants), Chailakhyan, M.Kh. and Mokronosov, A.T., Eds., Moscow: Nauka, 1990, pp. 138–142.

    Google Scholar 

  6. Suttle, J.C., Dormancy and Sprouting, Potato Biology and Biotechnology: Advances and Perspectives, Vreugdenhil, D., Ed., Amsterdam: Elsevier, 2007, pp. 287–309.

    Chapter  Google Scholar 

  7. Struik, P.C., Above-Ground and Below-Ground Plant Development, Potato Biology and Biotechnology: Advances and Perspectives, Vreugdenhil, D., Ed., Amsterdam: Elsevier, 2007, pp. 219–236.

    Chapter  Google Scholar 

  8. Lang, G.A., Early, J.D., Martin, G.C., and Darnell, R.L., Endo-, Para- and Ecodormancy: Physiological Terminology and Classification for Dormancy Research, Hort. Sci., 1987, vol. 22, pp. 371–377.

    Google Scholar 

  9. Chao, W.S., Foley, M.E., Horvath, D.P., and Anderson, J.V., Signals Regulating Dormancy in Vegetative Buds, Int. J. Plant Devel. Biol., 2007, vol. 1, pp. 49–56.

    Google Scholar 

  10. Teper-Bamnolker, P., Buskila, Y., Lopesco, Y., Ben-Dor, S., Saad, I., Holdengreber, V., Belausov, E., Zemach, H., Ori, N., Lers, A., and Eshel, D., Release of Apical Dominance in Potato Tuber Is Accompanied by Programmed Cell Death in the Apical Bud Meristem, Plant Physiol., 2012, vol. 158, pp. 2053–2067.

    Article  PubMed  CAS  Google Scholar 

  11. Peterson, R.L., Barker, W.G., and Howarth, M.J., Development and Structure of Tubers, Potato Physiology, Li, P.H., Ed., Orlando, Fl.: Academic, 1985, pp. 123–152.

    Google Scholar 

  12. Hemberg, T., Potato Rest, Potato Physiology, Li, P.H., Ed., Orlando, Fl.: Academic, 1985, pp. 353–388.

    Google Scholar 

  13. Claassens, M. and Vreugdenhil, D., Is Dormancy Breaking of Potato Tubers the Reverse of Tuber Initiation? Potato Res., 2000, vol. 43, pp. 347–369.

    Article  CAS  Google Scholar 

  14. Xu, X., Vreugdenhil, D., and van Lammeren, A.A.M., Cell Division and Cell Enlargement during Potato Tuber Formation, J. Exp. Bot., 1998, vol. 49, pp. 573–582.

    CAS  Google Scholar 

  15. Borzenkova, R.A. and Borovkova, M.P., Developmental Patterns of Phytohormone Content in the Cortex and Pith of Potato Tubers as Related to Their Growth and Starch Content, Russ. J. Plant Physiol., 2003, vol. 50, pp. 119–124.

    Article  CAS  Google Scholar 

  16. Claassens, M.M.J., Verhees, J., van der Plas, L.H., van der Krol, A.R., and Vreugdenhil, D., Ethanol Breaks Dormancy of the Potato Tuber Apical Bud, J. Exp. Bot., 2005, vol. 56, pp. 2515–2525.

    Article  PubMed  CAS  Google Scholar 

  17. Alexopoulos, A.A., Aivalakis, G., Akoumianakis, K.A., and Passam, H.C., Bromoethane Induces Dormancy Breakage and Metabolic Changes in Tubers Derived from True Potato Seed, Postharv. Biol. Technol., 2009, vol. 54, pp. 165–171.

    Article  CAS  Google Scholar 

  18. Campbell, M.A., Gleichsner, A., Alsbury, R., Horvath, D., and Suttle, J., The Sprout Inhibitors Chlorpropham and 1,4-Dimethylnaphthalene Elicit Different Transcriptional Profiles and Do Not Suppress Growth through a Prolongation of the Dormant State, Plant Mol. Biol., 2010, vol. 73, pp. 181–189.

    Article  PubMed  CAS  Google Scholar 

  19. Kleinkopf, G.E., Oberg, N.A., and Olsen, N.L., Sprout Inhibition in Storage: Current Status, New Chemistries and Natural Compounds, Am. J. Potato Res., 2003, vol. 80, pp. 317–327.

    Article  CAS  Google Scholar 

  20. Campbell, M.A., Suttle, J.C., and Sell, T.W., Changes in the Cell Cycle Status and Expression of p34(cdc2) Kinase during Potato Tuber Meristem Dormancy, Physiol. Plant., 1996, vol. 98, pp. 743–752.

    Article  CAS  Google Scholar 

  21. Berckmans, B. and de Veylder, L., Transcriptional Control of the Cell Cycle, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 599–605.

    Article  PubMed  CAS  Google Scholar 

  22. Campbell, M., Segear, E., Beers, L., Knauber, D., and Suttle, J., Dormancy in Potato Tuber Meristems: Chemically Induced Cessation in Dormancy Matches the Natural Process Based on Transcript Profiles, Funct. Integr. Genom., 2008, vol. 8, pp. 317–328.

    Article  CAS  Google Scholar 

  23. Senning, M., Sonnewald, U., and Sonnewald, S., Deoxyuridine Triphosphate Expression Defines the Transition from Dormant to Sprouting Potato Tuber Buds, Mol. Breed., 2010, vol. 26, pp. 525–531.

    Article  CAS  Google Scholar 

  24. Hartmann, A., Senning, M., Hedden, P., Sonnewald, U., and Sonnewald, S., Reactivation of Meristem Activity and Sprout Growth in Potato Tubers Require Both Cytokinin and Gibberellin, Plant Physiol., 2011, vol. 155, pp. 776–796.

    Article  PubMed  CAS  Google Scholar 

  25. Viola, R., Roberts, A.G., Haupt, S., Gazzani, S., Hancock, R.D., Marmiroli, N., Machray, G.C., and Oparka, K.J., Tuberization in Potato Involves a Switch from Apoplastic to Symplastic Phloem Unloading, Plant Cell, 2001, vol. 13, pp. 385–398.

    PubMed  CAS  Google Scholar 

  26. Viola, R., Pelloux, J., van der Ploeg, A., Gillespie, T., Marquis, N., Roberts, A.G., and Hancock, R.D., Symplastic Connection Is Required for Bud Outgrowth Following Dormancy in Potato (Solanum tuberosum L.) Tubers, Plant Cell Environ., 2007, vol. 30, pp. 973–983.

    Article  PubMed  CAS  Google Scholar 

  27. Hancock, R.D., Roberts, A.G., and Viola, R., A Role for Symplastic Gating in the Control of the Potato Tuber Life Cycle, Plant Signal. Behav., 2008, vol. 3, pp. 27–29.

    Article  PubMed  Google Scholar 

  28. Désiré, S., Couillerot, J.P., Helbert, J.L., and Vasseur, J., Protein Changes in Solanum tuberosum during Storage and Dormancy Breaking of In Vitro Microtubers, Plant Physiol. Biochem., 1995, vol. 33, pp. 479–487.

    Google Scholar 

  29. Korableva, N.P. and Platonova, T.A., Biochemical Aspects of Hormonal Regulation of Plant Dormancy and Immunity (Review), Prikl. Biokhim. Mikrobiol., 1995, vol. 31, pp. 103–114.

    CAS  Google Scholar 

  30. Suttle, J.C., Physiological Regulation of Potato Tuber Dormancy, Am. J. Potato Res., 2004, vol. 81, pp. 253–262.

    Article  CAS  Google Scholar 

  31. Burton, W.G., The Potato, Essex (UK): Longman Scientific and Technical, 1989.

    Google Scholar 

  32. Chao, W.S., Serpe, M.D., Anderson, J.V., Gesch, R.W., and Horvath, D.P., Sugars, Hormones and Environment Affect the Dormancy Status in Underground Adventitious Buds of Leafy Spurge (Euphorbia esula), Weed Sci., 2006, vol. 54, pp. 59–68.

    Article  CAS  Google Scholar 

  33. Storey, M., The Harvested Crop, Potato Biology and Biotechnology: Advances and Perspectives, Vreugdenhil, D., Ed., Amsterdam: Elsevier, 2007, pp. 441–470.

    Chapter  Google Scholar 

  34. Appeldoorn, N.J.G., de Bruijn, S.M., Koot-Gronsveld, E.A.M., Visser, R.G.F., Vreugdenhil, D., and van der Plas, L.H.W., Developmental Changes of Enzymes Involved in the Conversion of Hexose-Phosphate and Its Subsequent Metabolites during Early Tuberization of Potato, Plant Cell Environ., 1999, vol. 22, pp. 1085–1096.

    Article  CAS  Google Scholar 

  35. Claassens, M.M.J., Carbohydrate Metabolism during Potato Tuber Dormancy and Sprouting: PhD Thesis of Wageningen University, Wageningen, Netherlands: Propress, 2002.

    Google Scholar 

  36. Zeeman, S.C., Kossmann, J., and Smith, A.M., Starch: Its Metabolism, Evolution, and Biotechnological Modification in Plants, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 209–234.

    Article  PubMed  CAS  Google Scholar 

  37. Geigenberger, P., Regulation of Starch Biosynthesis in Response to a Fluctuating Environment, Plant Physiol., 2011, vol. 155, pp. 1566–1577.

    Article  PubMed  CAS  Google Scholar 

  38. Tiessen, A., Hendriks, J.H.M., Stitt, M., Branscheid, A., Gibon, Y., Farré, E.M., and Geigenberger, P., Starch Synthesis in Potato Tubers Is Regulated by Post-Translational Redox Modification of ADP-Glucose Pyrophosphorylase: A Novel Regulatory Mechanism Linking Starch Synthesis to the Sucrose Supply, Plant Cell, 2002, vol. 14, pp. 2191–2213.

    Article  PubMed  CAS  Google Scholar 

  39. Kolbe, A., Tiessen, A., Schluepmann, H., Paul, M., Ulrich, S., and Geigenberger, P., Trehalose-6-Phosphate Regulates Starch Synthesis via Posttranslational Redox Activation of ADP-Glucose Pyrophosphorylase, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 11118–11123.

    Article  PubMed  CAS  Google Scholar 

  40. Ponnu, J., Wahl, V., and Schmid, M., Trehalose-6-Phosphate: Connecting Plant Metabolism and Development, Front. Plant Sci., 2011, vol. 2, pp. 1–6.

    Article  Google Scholar 

  41. Debast, S., Nuñes-Nesi, A., Hajirezaei, M.R., Hofmann, J., Sonnewald, U., Fernie, A.R., and Börnke, F., Altering Trehalose-6-Phosphate Content in Transgenic Potato Tubers Affects Tuber Growth and Alters Responsiveness to Hormones during Sprouting, Plant Physiol., 2011, vol. 156, pp. 1754–1771

    Article  PubMed  CAS  Google Scholar 

  42. Sergeeva, L.I., Claassens, M.M.J., Jamar, D.C.L., van der Plas, L.H.W., and Vreugdenhil, D., Starch-Related Enzymes during Potato Tuber Dormancy and Sprouting, Russ. J. Plant Physiol., 2012, vol. 56, pp. 556–564.

    Article  Google Scholar 

  43. Sergeeva, L.I. and Vreugdenhil, D., In Situ Staining of Activities of Enzymes Involved in Carbohydrate Metabolism in Plant Tissues, J. Exp. Bot., 2002, vol. 53, pp. 361–370.

    Article  PubMed  CAS  Google Scholar 

  44. Biemelt, S., Hajirezaei, M.R., Hentschel, E., and Sonnewald, U., Comparative Analysis of Abscisic Acid Content and Starch Degradation during Storage of Tubers Harversted from Different Potato Varieties, Potato Res., 2000, vol. 43, pp. 371–382.

    Article  CAS  Google Scholar 

  45. Rentzsch, S., Podzimska, D., Voegele, A., Imbeck, M., Müller, K., Linkies, A., and Leubner-Metzger, G., Doseand Tissue-Specific Interaction of Monoterpenes with the Gibberellin-Mediated Release of Potato Tuber Bud Dormancy, Sprout Growth and Induction of α-Amylases and β-Amylases, Planta, 2012, vol. 235, pp. 137–151.

    Article  PubMed  CAS  Google Scholar 

  46. Park, W.D., Molecular Approaches to Tuberization in Potato, The Molecular Biology of the Potato, Vayda, M.E. and Park, W.D., Eds., Melksham: Redwood, 1990, pp. 43–55.

    Google Scholar 

  47. Lehesranta, S.J., Davies, H.V., Shepherd, L.V.T., Koistinen, K.M., Massat, N., Nunan, N., McNicol, J.W., and Kürenlampi, S.O., Proteomic Analysis of the Potato Tuber Life Cycle, Proteomics, 2006, vol. 6, pp. 6042–6052.

    Article  PubMed  CAS  Google Scholar 

  48. Bachem, C., van der Hoeven, R., Lucker, J., Oomen, R., Casarini, E., Jacobsen, E., and Visser, R., Functional Genomic Analysis of Potato Tuber Life-Cycle, Potato Res., 2000, vol. 43, pp. 297–312.

    Article  CAS  Google Scholar 

  49. Ronning, C.M., Stegalkina, S.S., Ascenzi, R.A., Bougri, O., Hart, A.L., Utterbach, T.R., Vanaken, S.E., Riedmuller, S.B., White, J.A., Cho, J., Pertea, G.M., Lee, Y., Karamycheva, S., Sultana, R., Tsai, J., Quackenbush, J., Griffiths, H.M., Restrepo, S., Smart, C.D., Fry, W.E., van der Hoeven, R., Tanksley, S., Zhang, P., Jin, H., Yamamoto, M.L., Baker, B.J., and Buell, C.R., Comparative Analyses of Potato Expressed Sequence Tag Libraries, Plant Physiol., 2003, vol. 131, pp. 419–429.

    Article  PubMed  Google Scholar 

  50. Verhees, J., van der Krol, A.R., Vreugdenhil, D., and van der Plas, L.H.W., Characterization of Gene Expression during Potato Tuber Development in Individuals and Populations Using the Luciferase Reporter System, Plant Mol. Biol., 2002, vol. 50, pp. 653–665.

    Article  PubMed  CAS  Google Scholar 

  51. Kloosterman, B., Vorst, O., Hall, R.D., Visser, R.G.F., and Bachem, C.W., Tuber on a Chip: Differential Gene Expression during Potato Tuber Development, Plant Biotech. J., 2005, vol. 3, pp. 505–519.

    Article  CAS  Google Scholar 

  52. Kouzarides, T., Chromatin Modifications and Their Functions, Cell, 2007, vol. 128, pp. 693–705.

    Article  PubMed  CAS  Google Scholar 

  53. Law, R.D. and Suttle, J.C., Changes in Histone H3 and H4 Multi-Acetylation during Natural and Forced Dormancy Break in Potato Tubers, Physiol. Plant., 2004, vol. 120, pp. 642–649.

    Article  CAS  Google Scholar 

  54. Korableva, N.P., Karavaeva, K.A., and Metlitskii, L.V., Changes in the Level of Abscisic Acid in Potato Tubers in the Course of Dormancy and Sprouting, Sov. Plant Physiol., 1980, vol. 27, pp. 585–591.

    CAS  Google Scholar 

  55. Suttle, J.C., Postharvest Changes in Endogenous ABA Levels and ABA Metabolism in Relation to Dormancy in Potato Tubers, Physiol. Plant., 1995, vol. 95, pp. 233–240.

    Article  CAS  Google Scholar 

  56. Simko, I., McMurry, S., Yang, H.M, Manschot, A., Davies, P.J., and Ewing, E.E., Evidence from Polygene Mapping for Causal Relationship between Potato Tuber Dormancy and Abscisic Acid Content, Plant Physiol., 1997, vol. 115, pp. 1453–1459.

    PubMed  CAS  Google Scholar 

  57. Destefano-Beltrán, L., Knauber, D., Huckle, L., and Suttle, J.C., Effects of Postharvest Storage and Dormancy Status on ABA Content, Metabolism and Expression of Genes Involved in ABA Biosynthesis and Metabolism in Potato Tuber Tissues, Plant Mol. Biol., 2006, vol. 61, pp. 687–697.

    Article  PubMed  Google Scholar 

  58. Suttle, J.C., Abrams, S.R., Destefano-Beltrán, L., and Huckle, L.L., Chemical Inhibition of Potato ABA-8′-Hydroxylase Activity Alters In Vitro and In Vivo ABA Metabolism and Endogenous ABA Levels But Does Not Affect Potato Microtuber Dormancy Duration, J. Exp. Bot., 2012, vol. 63, pp. 5717–5725.

    Article  PubMed  CAS  Google Scholar 

  59. Suttle, J.C., Involvement of Ethylene in Potato Microtuber Dormancy, Plant Physiol., 1998, vol. 118, pp. 843–848.

    Article  PubMed  CAS  Google Scholar 

  60. Rylski, I., Rappaport, L., and Pratt, H.K., Dual Effects of Ethylene on Potato Dormancy and Sprout Growth, Plant Physiol., 1974, vol. 53, pp. 658–662.

    Article  PubMed  CAS  Google Scholar 

  61. Alexopoulos, A.A., Aivalakis, G., Akoumianakis, K.A., and Passam, H.C., Effect of Gibberellic Acid on the Duration of Dormancy of Potato Tubers Produced by Plants Derived from True Potato Seed, Postharv. Biol. Technol., 2008, vol. 49, pp. 424–430.

    Article  CAS  Google Scholar 

  62. Korableva, N.P., Platonova, T.A., Dogonadze, M.Z., and Evsunina, A.S., Brassinolide Effect on Growth of Apical Meristems, Ethylene Production and Abscisic Acid Content in Potato Tubers, Biol. Plant., 2002, vol. 45, pp. 39–43.

    Article  CAS  Google Scholar 

  63. Platonova, T.A. and Korableva, N.P., Effect of Epibrassinolide on the Growth of Potato Tuber Meristem, Prikl. Biokhim. Mikrobiol., 1994, vol. 30, pp. 923–930.

    CAS  Google Scholar 

  64. Sorce, C., Lorenzi, R., Ceccarelli, N., and Ranalli, P., Changes in Free and Conjugated IAA during Dormancy and Sprouting of Potato Tubers, Aust. J. Plant Physiol., 2000, vol. 27, pp. 371–377.

    Article  CAS  Google Scholar 

  65. Sorce, C., Lombardi, L., Giorgetti, L., Parisi, B., Ranalli, P., and Lorenzi, R., Indoleacetic Acid Concentration and Metabolism Changes during Bud Development in Tubers of Two Potato (Solanum tuberosum) Cultivars, J. Plant Physiol., 2009, vol. 166, pp. 1023–1033.

    Article  PubMed  CAS  Google Scholar 

  66. Faivre-Rampant, O., Cardele, L., Marshall, D., Viola, R., and Taylor, M.A., Changes in Gene Expression during Meristem Activation Processes in Solanum tuberosum with a Focus on the Regulation of an Auxin Response Factor Gene, J. Exp. Bot., 2004, vol. 55, pp. 613–622.

    Article  PubMed  CAS  Google Scholar 

  67. Yoshihara, T., Omer, E.A., Koshino, H., Sakamura, S., Kikuta, Y., and Koda, Y., Structure of a Tuber-Inducing Stimulus from Potato Leaves (Solanum tuberosum L.), Agric. Biol. Chem., 1989, vol. 53, pp. 2835–2837.

    Article  CAS  Google Scholar 

  68. Abdala, G., Castro, G., Miersch, O., and Pearse, D.H., Changes in Jasmonate and Gibberellin Levels during Development of Potato Plants (Solanum tuberosum), Plant Growth Regul., 2002, vol. 36, pp. 121–126.

    Article  CAS  Google Scholar 

  69. Suttle, J.C., Huckle, L.L., and Lulai, C., The Effects of Dormancy Status on the Endogenous Contents and Biological Activities of Jasmonic Acid, N-(Jasmonoyl)-Isoleucine, and Tuberonic Acid in Potato Tubers, Am. J. Potato Res., 2011, vol. 88, pp. 283–293.

    Article  Google Scholar 

  70. Platonova, T.A., Evsyunina, A.S., and Korableva, N.P., Changes in the Plastid Apparatus of Apical Meristem Cells of Potato Tubers upon Growth Regulation with Jasmonic Acid, Appl. Biochem. Microbiol., 2010, vol. 46, pp. 352–358.

    Article  CAS  Google Scholar 

  71. Ladyzhenskaya, E.P. and Korablyova, N.P., Effect of Salicylic Acid on the Proton Translocation Activity of Plasmalemma of Potato Tuber Cells, Appl. Biochem. Microbiol., 2011, vol. 47, pp. 435–439.

    Article  CAS  Google Scholar 

  72. Turnbull, C.G.N. and Hanke, D.E., The Control of Bud Dormancy in Potato Tubers: Evidence for the Primary Role of Cytokinins and a Seasonal Pattern of Changing Sensitivity to Cytokinin, Planta, 1985, vol. 165, pp. 359–365.

    Article  CAS  Google Scholar 

  73. Suchova, L.S., Macháčková, I., Eder, J., Bibik, N.D., and Korableva, N.P., Changes in the Levels of Free IAA and Cytokinins in Potato Tubers during Dormancy and Sprouting, Biol. Plant., 1993, vol. 35, pp. 387–391.

    Article  Google Scholar 

  74. Suttle, J.C. and Banowetz, G.M., Changes in cisZeatin and cis-Zeatin Riboside Levels and Biological Activity during Potato Tuber Dormancy, Physiol. Plant., 2000, vol. 109, pp. 68–74.

    Article  CAS  Google Scholar 

  75. Suttle, J.C., Effects of Synthetic Phenylurea and Nitroguanidine Cytokinins on Dormancy Break and Sprout Growth in Russet Berbank Minitubers, Am. J. Potato Res., 2008, vol. 85, pp. 121–128.

    Article  CAS  Google Scholar 

  76. Suttle, J.C., Dormancy-Related Changes in Cytokinin Efficacy and Metabolism in Potato Tubers during Postharvest Storage, Plant Growth Regul., 2001, vol. 35, pp. 199–206.

    Article  CAS  Google Scholar 

  77. Romanov, G.A., How Do Cytokinins Affect the Cell? Russ. J. Plant Physiol., 2009, vol. 56, pp. 268–290.

    Article  CAS  Google Scholar 

  78. Suttle, J.C., Involvement of Endogenous Gibberellins in Potato Tuber Dormancy and Early Sprout Growth: A Critical Assessment, J. Plant Physiol., 2004, vol. 161, pp. 157–164.

    Article  PubMed  CAS  Google Scholar 

  79. Carrera, E., Bou, J., Garcia-Martinez, J.L., and Prat, S., Changes in GA20-Oxidase Gene Expression Strongly Affect Stem Length, Tuber Induction and Tuber Yield of Potato Plants, Plant J., 2000, vol. 22, pp. 247–256.

    Article  PubMed  CAS  Google Scholar 

  80. Kloosterman, B., Navarro, C., Bijsterbosch, G., Lange, T., Prat, S., Visser, R.G., and Bachem, C.W., StGA2ox1 Is Induced prior to Stolon Swelling and Controls GA Levels during Potato Tuber Development, Plant J., 2007, vol. 52, pp. 362–373.

    Article  PubMed  CAS  Google Scholar 

  81. Ross, J.J., Weston, D.E., Davidson, S.E., and Reid, J.B., Plant Hormone Interactions: How Complex Are They? Physiol. Plant., 2011, vol. 141, pp. 299–309.

    Article  PubMed  CAS  Google Scholar 

  82. Alexopoulos, A.A., Akoumianakis, K.A., Vemmos, S.N., and Passam, H.C., The Effect of Postharvest Application of Gibberellic Acid and Benzyl Adenine on the Duration of Dormancy of Potatoes Produced by Plants Grown from TPS, Postharv. Biol. Technol., 2007, vol. 46, pp. 54–62.

    Article  CAS  Google Scholar 

  83. Gibson, S., Control of Plant Development and Gene Expression by Sugar Signaling, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 93–102.

    Article  PubMed  CAS  Google Scholar 

  84. Palmer, C.E. and Smith, O.E., Effect of Kinetin on Tuber Formation on Isolated Stolons of Solanum tuberosum L. Cultured In Vitro, Plant Cell Physiol., 1970, vol. 11, pp. 303–314.

    CAS  Google Scholar 

  85. Xu, X., van Lammeren, A.A.M., Vermeer, E., and Vreugdenhil, D., The Role of Gibberellin, Abscisic Acid and Sucrose in the Regulation of Potato Tuber Formation In Vitro, Plant Physiol., 1998, vol. 117, pp. 575–584.

    Article  PubMed  CAS  Google Scholar 

  86. Aksenova, N.P., Konstantinova, T.N., Golyanovskaya, S.A., Kossman, I., Willmitzer, L., and Romanov, G.A., Transformed Potato Plants as a Model for Studying the Hormonal and Carbohydrate Regulation of Tuberization, Russ. J. Plant Physiol., 2000, vol. 47, pp. 370–379.

    CAS  Google Scholar 

  87. Romanov, G.A., Aksenova, N.P., Konstantinova, T.N., Golyanovskaya, S.A., Kossmann, J., and Wilmitzer, L., Effect of Indole-3-Acetic Acid and Kinetin on Tuberization Parameters of Different Cultivars and Transgenic Lines of Potato In Vitro, Plant Growth Regul., 2000, vol. 32, pp. 245–251.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Romanov.

Additional information

Original Russian Text © N.P. Aksenova, L.I. Sergeeva, T.N. Konstantinova, S.A. Golyanovskaya, O.O. Kolachevskaya, G.A. Romanov, 2013, published in Fiziologiya Rastenii, 2013, Vol. 60, No. 3, pp. 307–319.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksenova, N.P., Sergeeva, L.I., Konstantinova, T.N. et al. Regulation of potato tuber dormancy and sprouting. Russ J Plant Physiol 60, 301–312 (2013). https://doi.org/10.1134/S1021443713030023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713030023

Keywords

Navigation