Skip to main content
Log in

Foundations of the Theory of Additional Complication in the Earth’s Biosphere

  • Point of View
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

The problem of the evolution of the surrounding world is one of the most important issues for science in general and has been exercising the minds of scientists over several thousand years. In the opinion of the author of this article, one of the reasons is that science has not disclosed thus far the constructive function of water in the formation of the Earth’s external envelopes, which was determined by its antagonistic contradiction with basalts and, later, simple products of photosynthesis. Nonequilibrium is the main factor of all evolutionary processes, which ensures the creation of new environmentally equilibrium formations, including more complex ones. However, the water cycle, which determines the ingress of new portions of water into the system, continuously, violating equilibrium, produces additional complications, leading to the acceleration of the evolution of V.I. Vernadsky’s “water‒rock‒gas‒organic matter (living and nonliving)” system. Water provides for unity in the behavior of inert and living matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. Dawkins, The Greatest Show on Earth: The Evidence for Evolution (Free Press, New York, 2009).

    Google Scholar 

  2. N. N. Moiseev, Parting with Simplicity: The Road to Obviousness (AGRAF, Moscow, 1998) [in Russian].

    Google Scholar 

  3. V. A. Alekseev, B. N. Ryzhenko, S. L. Shvartsev, et al., Geological Evolution and the Self-Organization of the Water–Rock System, Vol. 1: The Water–Rock System in the Earth’s Crust: Interaction, Kinetics, Equilibrium, Modeling (Izd. SO RAN, Novosibirsk, 2005) [in Russian].

  4. G. L. Pospelov, Paradoxes, Geologo-Physical Essence and Mechanisms of Metasomatism (Nauka, Novosibirsk, 1973) [in Russian].

    Google Scholar 

  5. S. L. Shvartsev, “Fundamental mechanisms of interaction in the water–rock system and its internal geological evolution,” Litosfera, No. 6, 3–24 (2008).

    Google Scholar 

  6. S. L. Shvartsev, “The basic contradiction that predetermined the mechanisms and vector of global evolution,” Herald Russ. Acad. Sci. 85 (4), 342–351 (2015).

    Article  Google Scholar 

  7. R. Helmann, J.-M. Penisson, R. L. Hervig, et al., “An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid PH: Evidence for interfacial dissolution–reprecipitation,” Phys. Chem. Minerals 30 (4), 192–197 (2003).

    Article  CAS  Google Scholar 

  8. L. Zhang and A. Lüttge, “Theoretical approach to evaluating plagioclase dissolution mechanisms,” Geochim. Cosmochim. Acta, No. 10, 2832–2849 (2009).

    Google Scholar 

  9. Ch. Zhu, P. Lu, Z. Zheng, and J. Ganor, “Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths,” Geochim. Cosmochim. Acta 74, 3963–3983 (2010).

    Article  CAS  Google Scholar 

  10. P. Lu, H. Konishi, E. Oelkers, and Ch. Zhu, “Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 5. Results of K-feldspar hydrolysis experiments,” Chin. J. Geochem. 34, 1–12 (2015).

    Article  CAS  Google Scholar 

  11. A. Putnis, “Mineral replacement reactions: from macroscopic observations to microscopic mechanisms,” Mineral. Magaz. 66, 689–708 (2002).

    Article  CAS  Google Scholar 

  12. D. E. Harlow, R. Wirth, and C. J. Hetherington, “Fluid-mediated partial alteration in monazite: The role of coupled dissolution in element redistribution and mass transfer,” Contrib. Mineral. and Petrol. 162, 329–348 (2011).

    Article  CAS  Google Scholar 

  13. S. L. Shvartsev, “The internal evolution of the water–rock geological system,” Herald Russ. Acad. Sci. 82 (2), 134–142 (2012).

    Article  Google Scholar 

  14. S. L. Shvartsev, “Evolution in nonliving matter: Nature, mechanisms, complication, and self-organization,” Herald Russ. Acad. Sci. 87 (6), 518–526 (2017).

    Article  Google Scholar 

  15. S. L. Shvartsev, “Self-organizing abiogenic dissipative structures in the geologic history of the Earth,” Earth Sci. Frontiers 16 (6), 257–275 (2009).

    Article  CAS  Google Scholar 

  16. S. L. Shvartsev, “How do complexities form?,” Herald Russ. Acad. Sci. 84 (4), 300–309 (2014).

    Article  Google Scholar 

  17. S. L. Shvartsev, “Where did global evolution begin?,” Herald Russ. Acad. Sci. 80 (2), 173–182 (2010).

    Article  Google Scholar 

  18. S. L. Shvartsev, “Unknown mechanisms of granitization of basalts,” Herald Russ. Acad. Sci. 86 (6), 513–526 (2016).

    Article  Google Scholar 

  19. V. A. Kiryukhin, A. I. Korotkov, and S. L. Shvartsev, Hydrogeochemistry (Nedra, Moscow, 1993) [in Russian].

    Google Scholar 

  20. Sedimentary Basins: Research Methods, Structure, and Evolution, Ed. by Yu. G. Leonov and Yu. A. Volozh (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  21. S. R. Krainov, B. N. Ryzhenko, and V. M. Shvets, Geochemistry of Groundwater: Theoretical, Applied, and Ecological Aspects (Nauka, Moscow, 2012) [in Russian].

    Google Scholar 

  22. S. L. Shvartsev, B. N. Ryzhenko, V. A. Alekseev, et al., Geological Evolution and the Self-Organization of the Water–Rock System, Vol. 2: The Water–Rock System in the Conditions of a Hypergenesis Zone (Izd. SO RAN, Novosibirsk, 2007) [in Russian].

  23. A. M. Plyusnin, L. V. Zamana, S. L. Shvartsev, et al., “Hydrogeochemical peculiarities of the composition of nitric thermal waters in the Baikal Rift Zone,” Rus. Geol. and Geophys. 54 (5), 495–500 (2013).

    Article  Google Scholar 

  24. G. G. Komissarov, “Photosynthesis: A Physicochemical approach,” Khim. Fiz., No. 1, 24–54 (2003).

  25. S. L. Shvartsev, “Bound water as an accumulator of solar energy in supergene clays,” Russ. Geol. and Geophys. 44 (3), 233–239 (2003).

    CAS  Google Scholar 

  26. Yu. P. Rassadkin, Water, Ordinary and Extraordinary (Galereya STO, Moscow, 2008) [in Russian].

    Google Scholar 

  27. A. I. Kolesnikov, G. F. Reiter, N. Choudhury, et al., “Quantum tunneling of water in beryl: A new state of the water molecule,” Phys. Rev. Lett. 16, 116 (2016).

    Google Scholar 

  28. D. G. Knorre and S. D. Myzina, Biological Chemistry, 4th ed. (Izd. SO RAN, Novosibirsk, 2012) [in Russian].

    Google Scholar 

  29. V. E. Khain, “The interaction between the atmosphere, the biosphere, and the lithosphere is the most important process in the Earth’s development,” Herald Russ. Acad. Sci. 77 (5), 470–473 (2007).

    Article  Google Scholar 

  30. S. L. Shvartsev, “Water as the main factor of global evolution,” Herald Russ. Acad. Sci. 83 (1), 78–85 (2013).

    Article  Google Scholar 

  31. Yu. V. Chaikovskii, An Active Coherent World: An Experience in the Theory of Life Evolution (Tovarishchestvo Nauchnykh Izdanii KMK, Moscow, 2008) [in Russian].

    Google Scholar 

  32. I. L. Andreev, “The aquatic nanofoundation of human life and health,” Herald Russ. Acad. Sci. 87 (1), 75–82 (2017).

    Article  Google Scholar 

  33. A. I. Perel’man and N. S. Kasimov, Landscape Geochemistry (Astreya-2000, Moscow, 1999) [in Russian].

  34. I. Prigogine, and I. Stengers, Order out of Chaos: Man’s New Dialog with Nature (Bantam Books, Toronto, 1984).

    Google Scholar 

  35. T. T. Berezov and B. F. Korovkin, Biological Chemistry, 3rd ed. (Meditsina, Moscow, 1998) [in Russian].

    Google Scholar 

  36. M. V. Krylov, “Evolutionary commonality of nonliving nature and living organisms,” Herald Russ. Acad. Sci. 87 (3), 249–255 (2017).

    Article  Google Scholar 

  37. V. I. Vernadsky, The History of Natural Waters, Ed. by S. L. Shvartsev and F. T. Yanshina (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

Download references

Funding

This article was supported by the Russian Science Foundation, grant no. 17-17-01158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Shvartsev.

Additional information

Translated by B. Alekseev

Stepan L’vovich Shvartsev, Dr. Sci. (Geol.–Mineral.), was Chief Researcher of the Tomsk Branch of the Trofimuk Institute of Petroleum Geology and Geophysics (IPGG), RAS Siberian Branch, and a Professor of Tomsk Polytechnic University (TPU).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvartsev, S.L. Foundations of the Theory of Additional Complication in the Earth’s Biosphere. Her. Russ. Acad. Sci. 89, 379–387 (2019). https://doi.org/10.1134/S1019331619040105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331619040105

Keywords:

Navigation