Skip to main content
Log in

Determining the Basis of Homodesmotic Reactions of Cyclic Organic Compounds by Means of Graph Theory

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Comparative calculations based on the use of a homodesmotic reaction (HDR)—an isodesmic process with the additional requirement for group balance—is used to analyze the thermochemical characteristics of cyclic organic compounds exemplified by bicyclo[2.1.0]pentene-2. To avoid confusion in selecting HDRs, an algorithm is developed for determining the HDR basis, i.e., the set of all possible independent homodesmotic reactions. The algorithm for constructing the set of HDRs is based on an analysis and transformations of the bond graph of groups for the investigated chemical compound. The use of graph theory allows us to automate the procedure for deriving the basis of homodesmotic reactions, and to obtain a visual geometric interpretation of the basis, which is important for subsequent physicochemical analysis. The energetics of bicyclo[2.1.0]pentene-2 is investigated using the proposed approach, and the independent basis of HDRs is found to include 19 formal transformations. Standard enthalpies for the test compound and the participants of homodesmotic reactions are calculated using the G3 composite approach. Thermochemical analysis of the obtained data allows us to determine the standard enthalpy of formation of the bicycle (ΔfH° = 336.4 kJ/mol) and value ΔfH° of a number of cyclic and acyclic alkenes and alkadienes that are products of theoretical decomposition of the test compound. The proposed method is shown to be extremely effective in analyzing the effects of nonbonded interactions in the structure of organic molecules. The ring strain energy of the bicycle is calculated or the test compound: ES = 295.2± 2.2 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. W. D. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, J. Am. Chem. Soc. 92, 4796 (1970).

    Article  CAS  Google Scholar 

  2. L. Radom, W. D. Hehre, and J. A. Pople, J. Am. Chem. Soc. 93, 289 (1971).

    Article  Google Scholar 

  3. P. George, M. Trachtman, C. W. Bock, and A. M. Brett, Theor. Chim. Acta 38, 121 (1975).

    Article  CAS  Google Scholar 

  4. P. George, M. Trachtman, C. W. Bock, and A. M. Brett, Tetrahedron 32, 317 (1976).

    Article  CAS  Google Scholar 

  5. P. George, M. Trachtman, C. W. Bock, and A. M. Brett, J. Chem. Soc. Perkin Trans. II, 1222 (1976).

    Article  Google Scholar 

  6. J. D. Dill, A. Greenberg, and J. F. Liebman, J. Am. Chem. Soc. 101, 6814 (1979).

    Article  CAS  Google Scholar 

  7. S. M. Bachrach, J. Chem. Educ. 67, 907 (1990).

    Article  CAS  Google Scholar 

  8. S. Benson, Thermochemical Kinetics (Wiley, New York, 1968).

    Google Scholar 

  9. V. I. Minkin, Pure Appl. Chem. 71, 1919 (1999).

    Article  CAS  Google Scholar 

  10. Int. Union of Pure and Applied Chemistry, Compendium of Chemical Terminology (Gold Book), Version 2.3.3 (2014).

  11. S. E. Wheeler, K. N. Houk, P. v. R. Schleyer, and W. D. Allen, J. Am. Chem. Soc. 131, 2547 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. E. Wheeler, WIREs Comput. Mol. Sci. 2, 204 (2012).

    Article  CAS  Google Scholar 

  13. S. L. Khursan, Vestn. Bashkir. Univ. 19, 395 (2014).

    Google Scholar 

  14. S. L. Khursan, Russ. J. Phys. Chem. A 76, 405 (2002).

    Google Scholar 

  15. D. S. Shaikhlislamov, M. R. Talipov, and S. L. Khursan, Russ. J. Phys. Chem. A 81, 235 (2007).

    Article  CAS  Google Scholar 

  16. S. L. Khursan, Russ. J. Phys. Chem. A 78 (Suppl. 1), 34 (2004).

    Google Scholar 

  17. S. L. Khursan, Kinet. Catal. 57, 159 (2016).

    Article  CAS  Google Scholar 

  18. I. Fishtik, J. Phys. Chem., Part A 116, 1854 (2012).

    CAS  Google Scholar 

  19. M. D. Wodrich, C. Corminboeuf, and S. E. Wheeler, J. Phys. Chem., Part A 116, 3436 (2012).

    CAS  Google Scholar 

  20. I. Fishtik, J. Phys. Chem., Part A 116, 8792 (2012).

    CAS  Google Scholar 

  21. M. D. Wodrich, J. F. Gonthier, C. Corminboeuf, and S. E. Wheeler, J. Phys. Chem., Part A 116, 8794 (2012).

    CAS  Google Scholar 

  22. S. L. Khursan, A. S. Ismagilova, A. A. Akhmerov, and S. I. Spivak, Russ. J. Phys. Chem. A 90, 796 (2016).

    Article  CAS  Google Scholar 

  23. S. L. Khursan, A. S. Ismagilova, and S. I. Spivak, Dokl. Akad. Nauk 474, 454 (2017).

    Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Rev. C.01 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  25. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  26. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  27. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

    Article  CAS  Google Scholar 

  28. T. H. J. Dunning, J. Chem. Phys. 90, 1007 (1989).

    Article  CAS  Google Scholar 

  29. L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998).

    Article  CAS  Google Scholar 

  30. P. J. Linstrom and W. G. Mallard, NIST Chemistry Webbook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD. http://webbook.nist.gov. Accessed December 21, 2017.

  31. S. Rayne and K. Forest, J. Chem. Eng. Data 55, 5359 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Khimiya shared resource center at the Ufa Institute of Chemistry, Russian Academy of Sciences, for the opportunity to use a supercomputer to perform our quantum-chemical calculations. This work was supported by the Russian Foundation for Basic Research, and by the Government of the Republic of Bashkortostan as part of scientific project no. 17-47-020068, as well as by the Russian Foundation for Basic Research as the part of scientific project no. 18-07-00584A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. L. Khursan, A. S. Ismagilova or A. I. Akhmetyanova.

Additional information

Translated by Yu. Modestova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khursan, S.L., Ismagilova, A.S. & Akhmetyanova, A.I. Determining the Basis of Homodesmotic Reactions of Cyclic Organic Compounds by Means of Graph Theory. Russ. J. Phys. Chem. 92, 1312–1320 (2018). https://doi.org/10.1134/S0036024418070154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418070154

Keywords:

Navigation