Skip to main content
Log in

Spin—Orbit Coupling in Single-Walled Gold Nanotubes

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of spin—orbit coupling on the electron levels of (5, 3), (8, 7), (11, 3), (18, 11), (10, 5), (8, 8), and (13, 0) gold nanotubes of various diameters and chirality was studied in the framework of the relativistic version of the linear augmented cylindrical wave method. Spin-dependent band structures and electron state densities were calculated. Spin—orbit coupling is manifested as splitting of nonrelativistic dispersion curves. For the dispersion curve that crosses the Fermi level in the (5, 3) tube of the minimum radius, this splitting reaches 0.5 eV and decreases on going to low-lying valence band states. An increase in the radius and a decrease in the cylindrical surface curvature of these nanotubes suppress the spin—orbit splitting. All tubes possess a metal type band structure in which the number of conduction channels increases with increasing radius of the nanotube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kondo and K. Takayanagi, Science 289, 606 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. C. R. Bridges, P. M. DiCarmine, A. Fokina, et al., Chem. Mater., No. 1, 1127 (2013).

    Google Scholar 

  3. Y. Oshima, A. Onga, and K. Takayanagi, Phys. Rev. Lett. 91, 205503 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. W. R. Hendren, A. Murphy, P. Evans, et al., J. Phys.: Condens. Matter 20, 362203 (2008).

    Google Scholar 

  5. H. W. Wang, C. F. Shieh, H. Y. Chen, et al., Nanotechnology 17, 2689 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. C. R. Bridges, P. M. DiCarmine, and D. S. Seferos, Chem. Mater., No. 24, 963 (2012).

    Google Scholar 

  7. J. Kohl, M. Fireman, and D. M. O’ Carroll, Phys. Rev. B 84, 235118 (2011).

    Article  CAS  Google Scholar 

  8. D. Huang, F. Liao, S. Molesa, et al., J. Electrochem. Soc. 150, 412 (2003).

    Article  CAS  Google Scholar 

  9. X. Yang and J. Dong, Phys. Rev. B 71, 233403 (2005).

    Article  CAS  Google Scholar 

  10. K. Zhang and H. Zhang, J. Phys. Chem. C 118, 635 (2014).

    Article  CAS  Google Scholar 

  11. M. Valle, C. Tejedor, and G. Cuniberti, Phys. Rev. B 74, 045408 (2006).

    Article  CAS  Google Scholar 

  12. Y. Oshima, K. Mouri, L. Guo, et al., J. Phys. Soc. Jpn. 75, 053705 (2006).

    Article  CAS  Google Scholar 

  13. A. Sen, C. J. Lin, and C. C. Kaun, J. Phys. Chem. C 117, 13676 (2013).

    Article  CAS  Google Scholar 

  14. T. Ono and K. Hirose, Phys. Rev. Lett. 94, 206806 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. D. Z. Manrique, J. Cserti, and C. J. Lambert, Phys. Rev. B 81, 073103 (2010).

    Article  CAS  Google Scholar 

  16. N. Liu, S. Jin, L. Guo, et al., Phys. Rev. B 95, 155311 (2017).

    Article  Google Scholar 

  17. T. Ando, J. Phys. Soc. Jpn. 69, 1757 (2000).

    Article  CAS  Google Scholar 

  18. X. Yang, J. Zhou, H. Weng, and J. Dong, Appl. Phys. Lett. 92, 023115 (2008).

    Article  CAS  Google Scholar 

  19. Y. Mokrousov, G. Bihlmayer, and S. Blugel, Phys. Rev. B 72, 045402 (2005).

    Article  CAS  Google Scholar 

  20. P. N. D’yachkov and D. V. Makaev, Phys. Rev. B 76, 195411 (2007).

    Article  CAS  Google Scholar 

  21. P. N. D’yachkov, D. Z. Kutlubaev, and D. V. Makaev, Phys. Rev. B 82, 035426 (2010).

    Article  CAS  Google Scholar 

  22. P. N. D’yachkov and D. V. Makaev, Int. J. Quantum Chem. 116, 316 (2016).

    Article  CAS  Google Scholar 

  23. P. N. D’yachkov, Int. J. Quantum Chem. 116, 174 (2016).

    Article  CAS  Google Scholar 

  24. L. O. Khoroshavin, D. O. Krasnov, P. N. D’yachkov, and E. M. Kol’tsova, Zh. Neorg. Khim. 62, 800 (2017).

    Google Scholar 

  25. J. C. Slater, The Self-Consistent Field for Molecules and Solids (McGaw-Hill, New York, 1974).

    Google Scholar 

  26. J. B. Conklin, L. E. Johnson, and G. W. Pratt, Phys. Rev. 137, 1283 (1965).

    Article  Google Scholar 

  27. T. L. Loucks, Phys. Rev. 139, 1333 (1965).

    Article  CAS  Google Scholar 

  28. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  CAS  Google Scholar 

  29. D. D. Koelling and G. O. Arbman, J. Phys. F: Met. Phys. 5, 2041 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. D’yachkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, D.O., Khoroshavin, L.O. & D’yachkov, P.N. Spin—Orbit Coupling in Single-Walled Gold Nanotubes. Russ. J. Inorg. Chem. 64, 108–113 (2019). https://doi.org/10.1134/S0036023619010145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619010145

Keywords

Navigation