Skip to main content
Log in

Compact low-cost detector for in vivo assessment of microphytobenthos using laser induced fluorescence

  • Lasers and Their Applications
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The development of a compact low-cost detector for non-destructive assessment of microphytobenthos using laser induced fluorescence was described. The detector was built from a specially modified commercial miniature fiber optic spectrometer (Ocean Optics USB4000). Its usefulness is experimentally verified by the study of diatom-dominated biofilms inhabiting the upper layers of intertidal sediments of the Tagus Estuary, Portugal. It is demonstrated that, operating with a laser emitter producing 30 mJ pulses at the wavelength of 532 nm, the detector is capable to record fluorescence signals with sufficient intensity for the quantitative biomass characterization of the motile epipelic microphytobenthic communities and to monitor their migratory activity. This paves the way for building an entire emitter-detector LIF system for microphytobenthos monitoring, which will enable microalgae communities occupying hardly accessible intertidal flats to be monitored in vivo at affordable cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Brito, A. Newton, P. Tett, and T. F. Fernandes, Ecological Indicators 19, 226 (2012).

    Article  Google Scholar 

  2. J. M. Oakes, B. D. Eyre, J. J. Middelburg, and H. T. S. Boschkerb, Limnology and Oceanography 55, 2126 (2010); http://www.aslo.org/lo/toc/vol-55/issue-5/2126.pdf.

    Article  Google Scholar 

  3. G. J. Underwood and J. Kromkamp, Advances in Ecological Research 29, 93 (1999).

    Article  Google Scholar 

  4. H. L. MacIntyre, R. J. Geider, and D. C. Miller, Estuaries 19, 186 (1996).

    Article  Google Scholar 

  5. S. J. Lake and M. J. Brush, Estuarine, Coastal and Shelf Science 95, 289 (2011).

    Article  ADS  Google Scholar 

  6. A. O. Alabi, M. Tampier, and E. Bibeau, Microalgae Technologies and Processes for Biofuels/Bioenergy Production in British Columbia (Seed Science, Nanaimo, 2009).

    Google Scholar 

  7. M. Marani, A. D’Alpaos, S. Lanzoni, L. Carniello, and A. Rinaldo, J. Geophys. Research F: Earth Surface 115, F04004 (2010).

    Article  ADS  Google Scholar 

  8. K. D. Hoagland, J. R. Rosowski, M. R. Gretz, and S. C. Roemer, J. Phycology 29, 537 (1993).

    Article  Google Scholar 

  9. A. Hoffmann and G. Gunkel, Limnologica 41, 10 (2011).

    Article  Google Scholar 

  10. J. S. Won, Y. K. Lee, and J. Choi, in IEEE Proceedings of the International Geoscience and Remote Sensing Symposium (IEEE, New York, 2005), p. 437.

    Google Scholar 

  11. J. P. Combe, P. Launeau, V. Carrere, D. Despan, V. Meleder, L. Barille, and C. Sotin, Remote Sensing of Environment 98, 371 (2005).

    Article  Google Scholar 

  12. S. E. Hagerthey, E. J. Scot, J. W. Louda, and P. Mongkronsri, J. Phycology 42, 1125 (2006).

    Article  Google Scholar 

  13. P. Cartaxana, M. Ruivo, C. Hubas, I. Davidson, J. Serôdio, and B. Jesus, J. Experimental Marine Biology and Ecology 405, 120 (2011).

    Article  Google Scholar 

  14. J. Serôdio, P. Cartaxana, H. Coelho, and S. Vieira, Remote Sensing of Environment 113, 1760 (2009).

    Article  Google Scholar 

  15. D. J. Suggett, O. Prášil, and M. A. Borowitzka, Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications (Springer, Dordrecht, 2010).

    Book  Google Scholar 

  16. C. J. Lorenzen, Deep Sea Research and Oceanographic Abstracts 13, 223 (1966).

    Article  Google Scholar 

  17. H. Kautsky and A. Hirsch, Naturwissenschaften 19, 964 (1931).

    Article  ADS  Google Scholar 

  18. M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Chem. Phys. 315, 171 (2005).

    Article  ADS  Google Scholar 

  19. M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Chem. Phys. 317, 57 (2005).

    Article  ADS  Google Scholar 

  20. M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Ann. Phys. 17, 460 (2008).

    Article  MATH  Google Scholar 

  21. M. Kitajima, and W. L. Butler, Biochimica et Biophysica Acta 376, 105 (1975).

    Article  Google Scholar 

  22. A. Lavrov, A. B. Utkin, J. Marques da Silva, R. Vilar, N. M. Santos, and B. Alves, Opt. Spectrosc. 112, 271 (2012).

    Article  ADS  Google Scholar 

  23. Handy PEA: Continuous Excitation Plant Efficiency Analyser (Hansatech Instruments, Norfolk, 2012); http://www.hansatech-instruments.com/forum/uploads/infosheets/download/Handy%20PEA.pdf.

    Google Scholar 

  24. J. Serôdio, J. Marques da Silva, and F. Catarino, J. Phycology 33, 542 (1997).

    Article  Google Scholar 

  25. S. Vieira, L. Ribeiro, B. Jesus, P. Cartaxana, and J. Marques da Silva, Photochemistry and Photobiology, in press (DOI: 10.1111/j.1751-1097.2012.01224.x).

  26. N. L. Fateyeva, A. V. Klimkin, O. V. Bender, A. P. Zotikova, and M. S. Yamburov, Atmospheric and Oceanic Optics 19, 189 (2006).

    Google Scholar 

  27. A. I. Grishin, G. M. Krekov, M. M. Krekova, G. G. Matvienko, A. Ya. Sukhanov, V. I. Timofeev, N. L. Fateyeva, and A. A. Lisenko, Atmospheric and Oceanic Optics 20, 294 (2007).

    Google Scholar 

  28. A. I. Grishin, G. M. Krekov, M. M. Krekova, G. G. Matvienko, A. Ya. Sukhanov, N. L. Fateyeva, A. A. Lisenko, and V. I. Timofeev, Intern. J. Remote Sensing 29, 2549 (2008).

    Article  ADS  Google Scholar 

  29. S. Vieira, A. B. Utkin, A. Lavrov, N. M. Santos, R. Vilar, J. Marques da Silva, and P. Cartaxana, Marine Ecology Progress Series 432, 45 (2011).

    Article  Google Scholar 

  30. Spectrelle 5000 Compact High Resolution Echelle Spectrograph (GWU-Lasertechnik, Erftstadt, 2000).

  31. Toshiba CCD Linear Image Sensor TCD1304AP (Toshiba, Irvine, 2001).

  32. Edmund Optics: Optical and Optical Instruments Catalog, Spring 2012 (Edmund Optics, Barrington, 2012) p. 448.

  33. Innovative Solutions for Your Application Needs (B&W Tek, Newark, 2012), pp. 11–27.

  34. http://www.thorlabs.com/Thorcat/18100/18143-D02.pdf.

  35. Phytoplankton Analyzer PHYTO-PAM and Phyto-Win Software V 1. 45 (Heinz Walz GmbH, Eichenring, 2003).

  36. USB4000 Data Sheet (Ocean Optics, Dunedin, 2009).

  37. USB Optical Bench Options (Ocean Optics, Dunedin, 2012), http://www.oceanoptics.com/products/benchoptions-usb4. asp.

  38. External Triggering Options Instructions (Ocean Optics, Dunedin, 2012), http://www.oceanoptics.com/technical/External-Triggering. pdf.

  39. OOIBase32, Spectrometer Operating Software: Installation and Operation Manual. Document Number 000-20000-020-02-0505 (Ocean Optics, Dunedin, 2005), http://chemgroups.ucdavis.edu/~osterloh/images/manuals/ooibase32. pdf.

  40. J. Serôdio, H. Coelho, S. Vieira, and S. Cruz, Estuarine, Coastal and Shelf Science 68, 547 (2006).

    Article  ADS  Google Scholar 

  41. P. Cartaxana and J. Serôdio, Limnology and Oceanography Methods 6, 466 (2008).

    Article  Google Scholar 

  42. Pulsed Nd:YAG Laser NL303: Technical Description and User’s Manual (EKSPLA, Vilnius, 2000).

  43. A. B. Utkin, A. M. Fernandes, A. V. Lavrov, and R. M. Vilar, Intern. J. Wildland Fire 13, 401 (2004).

    Article  Google Scholar 

  44. A. B. Utkin, A. Lavrov, and R. M. Vilar, Proc. SPIE 7994, 799415 (2011).

    Article  Google Scholar 

  45. LS2131M Compact Pulsed Nd:YAG Laser (LOTIS TII, Minsk, 2012).

  46. Brio Pulsed Nd:YAG Lasers (Quantel, Les Ulis, 2012).

  47. Air Cooled Nd:YAG Laser LQ115 (Solar Laser Systems, Minsk, 2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Utkin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utkin, A.B., Vieira, S., Marques da Silva, J. et al. Compact low-cost detector for in vivo assessment of microphytobenthos using laser induced fluorescence. Opt. Spectrosc. 114, 471–477 (2013). https://doi.org/10.1134/S0030400X13030259

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13030259

Keywords

Navigation