Skip to main content
Log in

DFT investigation on hydrogen bonding in cyclohexane-1,2,3,4,5-pentol crystal structure

  • Self-Organization in Molecular and Supramolecular Compounds
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The cyclohexane-1,2,3,4,5-pentol,C6H12O5 is a natural product extracted from Adiscanthus fusciflorus (Rutaceae). It crystallizes in the non-centrosymmetric space group P21 with one molecule in the asymmetric unit and it has been postulated to have at least ten strong O-H…O intermolecular interactions, two per each OH group of one molecule, producing a three-dimensional network. The crystal packing is defined by O-H…O hydrogen bonds. Due to the crucial role of the hydrogen bonds in defining the crystal structure, theoretical investigations in the gas phase have been carried out in order to explore the hydrogenbonding mechanism through a quantitative Kohn-Sham molecular orbital and corresponding energy decomposition analyses. The existence of a covalent component in hydrogen bonds has been proved which originates from donor-acceptor orbital interactions in the σ-electron system. Our analyses show that the stability of the crystal structure is enhanced by the formation of two hydrogen bonds with two vicinal molecules for each OH group in C6H12O5 molecule with respect to the formation of one or two hydrogen bonds with only one vicinal molecule, thus confirming the proposed existence of ten strong O-H…O intermolecular interactions for each molecule in the asymmetric unit. The presence of a cooperativity effect is observed which originates from a charge separation induced by the two vicinal molecules hydrogenbonded to an OH group in C6H12O5 molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization (2013).

  2. P. B. McGreevy and P. D. Marsden, Chemotheraphy of Parasitic deseaes, Ed. Campbell, W. C. & Rew, R. S. Vol. 1, Plenum Press, New York (1986), p. 115–127.

  3. R. Berens, R. Krug, and J. J. Marr, Biochemistry and Molecular Biology of Parasites, Ed. Marr, J. J. & Müuller, M. Academic Press Ltd., London (1995), p. 89–118.

  4. J. V. Tuttle and T. A. Krenitsky, J. Biol. Chem., 255(3), 909–916 (1980).

    CAS  Google Scholar 

  5. S. Wacharasindhu, W. Worawalai, W. Rungprom, and P. Phuwapraisirisan, Tetrahedron Letters, 50, 2189–2192 (2009).

    Article  CAS  Google Scholar 

  6. R. Taylor and C. F. Macrae, Acta Cryst., B57, 815–827 (2001).

    Article  CAS  Google Scholar 

  7. G. M. Sheldrick, SHELXL97. Program for crystal structure solution, University of Gottingen, Germany (1997).

    Google Scholar 

  8. G. M. Sheldrick, SHELXS97. Program for Crystal Structure refinement, University of Gottingen, Germany (1997).

    Google Scholar 

  9. ADF2009.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  10. G. te Velde, F.M. Bickelhaupt, E.J. Baerends. C. Fonseca Guerra, S.J.A. Van Gisbergen, J.G. Snijders, and T. Ziegler, J. Comput. Chem., 22, 931 (2001)

    Article  Google Scholar 

  11. C. Fonseca Guerra, O. Visser, J. G. Snijders, G. te Velde, and E. J. Baerends in Methods and Techniques for Computational Chemistry (Eds.: E. Clementi, G. Corongiu), STEF, Cagliari (1995), p. 305–395

  12. E. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys., 2, 41 (1973)

    Article  CAS  Google Scholar 

  13. E. J. Baerends and P. Ros, Chem. Phys., 8, 412 (1975)

    Article  CAS  Google Scholar 

  14. E. J. Baerends and P. Ros, Int. J. Quantum Chem. Symp., 12, 169 (1978)

    CAS  Google Scholar 

  15. C. Fonseca Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends, Theor. Chem. Acc., 99, 391 (1998)

    Google Scholar 

  16. P. M. Boerrigter, G. te Velde, and E. J. Baerends, Int. J. Quantum Chem., 33, 87 (1988)

    Article  CAS  Google Scholar 

  17. G. te Velde and E. J. Baerends, J. Comput. Phys., 99, 84 (1992)

    Article  Google Scholar 

  18. J. G. Snijders, P. Vernooijs, and E. J. Baerends, At. Data Nucl. Data Tables, 26, 483 (1981)

    Article  CAS  Google Scholar 

  19. L. Versluis and T. Ziegler, J. Chem. Phys., 88, 322 (1988).

    Article  CAS  Google Scholar 

  20. A.D. Becke, Phys. Rev. A, 38, 3098 (1988).

    Article  CAS  Google Scholar 

  21. C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B, 37, 785 (1988).

    Article  CAS  Google Scholar 

  22. S. Grimme, J. Comput. Chem., 25, 1463 (2004)

    Article  CAS  Google Scholar 

  23. S. Grimme, J. Comput. Chem., 27, 1787 (2006)

    Article  CAS  Google Scholar 

  24. C. Fonseca Guerra, T. van der Wijst, J. Poater, M. Swart, and F.M. Bickelhaupt, Theor. Chem. Acc., 125, 245 (2010)

    Article  Google Scholar 

  25. T. van der Wijst, C. Fonseca Guerra, M. Swart, F. M. Bickelhaupt, and B. Lippert, Angew. Chem., 121, 3335 (2009); Angew. Chem. Int. Ed., 48, 3285 (2009).

    Article  Google Scholar 

  26. F. M. Bickelhaupt, and E. J. Baerends, Rev. Comput. Chem., 15, 1 (2000).

    Article  CAS  Google Scholar 

  27. T. Ziegler, and A. Rauk, Inorg. Chem., 18, 1755 (1979)

    Article  CAS  Google Scholar 

  28. T. Ziegler, and A. Rauk, Inorg. Chem., 18, 1558 (1979)

    Article  CAS  Google Scholar 

  29. T. Ziegler, and A. Rauk, Theor. Chim. Acta, 46, 1 (1977).

    Article  CAS  Google Scholar 

  30. K. Morokuma, J. Chem. Phys., 55, 1236 (1971)

    Article  CAS  Google Scholar 

  31. K. Kitaura, and K. Morokuma, Int. J. Quantum Chem., 10, 325 (1976).

    Article  CAS  Google Scholar 

  32. C. Fonseca Guerra, J.-W. Handgraaf, E.J. Baerends, and F.M. Bickelhaupt, J. Comput. Chem., 25, 189 (2004)

    Article  Google Scholar 

  33. F. M. Bickelhaupt, N. J. R. Van Eikema Hommes, C. Fonseca Guerra, and E. J. Baerends, Organometallics, 15, 2923 (1996).

    Article  CAS  Google Scholar 

  34. F. H. Allen, O. Kennard, and R. Taylor, Acc. Chem. Res., 16, 146–153 (1983).

    Article  CAS  Google Scholar 

  35. L. J. Farrugia, ORTEP-3 for Windows, J. Appl. Cryst., 30, 565 (1997).

    Article  CAS  Google Scholar 

  36. L. J. Farrugia, WinGX, J. Appl. Cryst., 32, 837–838 (1999)

    Article  CAS  Google Scholar 

  37. A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands (2002).

    Google Scholar 

  38. O. Cox, J. R. Steiner, C. L. Barnes, and H. R. Retamozo, Acta Cryst., C45, 1263–1265 (1989).

    CAS  Google Scholar 

  39. G. Ganesh, C. Sivaraj, P.S. Kannan, N. Raaman, and A. SubbiahPandi, Acta Cryst., E65, o1114 (2009)

    Google Scholar 

  40. J. Ellena, A. E. Goeta, J. A. K. Howard, and G. Punte, J. Phys. Chem., A105, 8696–8708 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Napolitano.

Additional information

Original Russian Text © 2014 P. Belanzoni, P. S. Carvalho Jr., J. E. Theodoro, O. H. Thiemann, J. A. Ellena, H. B. Napolitano.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belanzoni, P., Carvalho, P.S., Theodoro, J.E. et al. DFT investigation on hydrogen bonding in cyclohexane-1,2,3,4,5-pentol crystal structure. J Struct Chem 55, 1596–1606 (2014). https://doi.org/10.1134/S0022476614080290

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614080290

Keywords

Navigation