Skip to main content
Log in

Role of qubit-cavity entanglement for switching dynamics of quantum interfaces in superconductor metamaterials

  • Quantum Informatics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We study quantum effects of strong driving field applied to dissipative hybrid qubit-cavity system which are relevant for a realization of quantum gates in superconducting quantum metamaterials. We demonstrate that effects of strong and non-stationary drivings have significantly quantum nature and cannot be treated by means of mean-field approximation. This is shown from a comparison of steady state solution of the standard Maxwell–Bloch equations and numerical solution of Lindblad equation on a density matrix. We show that mean-field approach provides very good agreement with the density matrix solution at not very strong drivings f < f* but at f > f* a growing value of quantum correlations between fluctuations in qubit and photon sectors changes a behavior of the system. We show that in regime of non-adiabatic switching on of the driving such a quantum correlations influence a dynamics of qubit and photons even at weak f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Yu. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, Science 327, 840 (2010).

    Article  ADS  Google Scholar 

  2. P. Macha, G. Oelsner, J.-M. Reiner, M. Marthaler, S. André, G. Schön, U. Hübner, H.-G. Meyer, E. Il’ichev, and A. V. Ustinov, Nat. Commun. 5, 5146 (2014).

    Article  ADS  Google Scholar 

  3. A. L. Rakhmanov, A. M. Zagoskin, S. Savel’ev, and F. Nori, Phys. Rev. B 77, 144507 (2008).

    Article  ADS  Google Scholar 

  4. P. A. Volkov and M. V. Fistul, Phys. Rev. B 89, 054507 (2014).

    Article  ADS  Google Scholar 

  5. N. I. Zheludev and Y. S. Kivshar, Nat. Mater. 11, 917 (2012).

    Article  ADS  Google Scholar 

  6. D. S. Shapiro, P. Macha, A. N. Rubtsov, and A. V. Ustinov, Photonics 2, 449 (2015).

    Article  Google Scholar 

  7. S. V. Remizov, D. S. Shapiro, and A. N. Rubtsov, Phys. Rev. A 92, 053814 (2015).

    Article  ADS  Google Scholar 

  8. T. Brandes, Phys. Rep. 408, 315 (2005).

    Article  ADS  Google Scholar 

  9. L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J. Majer, and P. Rabl, Phys. Rev. Lett. 113, 023603 (2014).

    Article  ADS  Google Scholar 

  10. S. Putz, D. O. Krimer, R. Amsüss, A. Valookaran, T. Nobauer, J. Schmiedmayer, S. Rotter, and J. Majer, Nat. Phys. 10, 720 (2014).

    Google Scholar 

  11. K. Sandner, H. Ritsch, R. Amsüss, Ch. Koller, T. Nöbauer, S. Putz, J. Schmiedmayer, and J. Majer, Phys. Rev. A 85, 053806 (2012).

    Article  ADS  Google Scholar 

  12. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, Science 316, 1312 (2007).

    Article  Google Scholar 

  13. J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, Sh. Shankar, B. W. Lovett Brendon, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, and S. A. Lyon, Nature 455, 1085 (2008).

    Article  ADS  Google Scholar 

  14. D. I. Schuster, A. P. Sears, E. Ginossar, L. di Carlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 140501 (2010).

    Article  ADS  Google Scholar 

  15. Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Article  ADS  Google Scholar 

  16. T. P. Orlando, J. E. Mooij, L. Tian, H. Caspar, L. S. Levitov, S. Lloyd, and J. J. Mazo, Phys. Rev. B 60, 15398 (1999).

    Article  ADS  Google Scholar 

  17. J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, van der Wal, H. Caspar, and S. Lloyd, Science 285, 1036 (1999).

    Article  Google Scholar 

  18. J. Clarke and F. K. Wilhelm, Nature 453, 1031 (2008).

    Article  ADS  Google Scholar 

  19. L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature 460, 240 (2009).

    Article  ADS  Google Scholar 

  20. P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, Rev. Mod. Phys. 84, 1 (2012).

    Article  ADS  Google Scholar 

  21. H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin, Heidelberg, 1999).

    Book  MATH  Google Scholar 

  22. J. Braumüller, J. Cramer, S. Schlör, H. Rotzinger, L. Radtke, A. Lukashenko, P. Yang, S. T. Skacel, S. Probst, M. Marthaler, L. Guo, A. V. Ustinov, and M. Weides, Phys. Rev. B 91, 054523 (2015).

    Article  ADS  Google Scholar 

  23. M. Silaev, T. T. Heikkilä, and P. Virtanen, Phys. Rev. E 90, 022103 (2014).

    Article  ADS  Google Scholar 

  24. W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, and T. P. Orlando, Science 310 (5754), 1653 (2005).

    Article  ADS  Google Scholar 

  25. P. Mandel, Phys. Rev. A 21, 2020 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  26. Y. Mu and C. M. Savage, Phys. Rev. A 46, 5944 (1992).

    Article  ADS  Google Scholar 

  27. A. Shnirman, Yu. Makhlin, and G. Schön, Phys. Scr. 102, 147 (2002).

    Article  Google Scholar 

  28. C. M. Savage and H. J. Carmichael, IEEE J. Quantum Electron. 24, 1495 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Shapiro.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remizov, S.V., Shapiro, D.S. & Rubtsov, A.N. Role of qubit-cavity entanglement for switching dynamics of quantum interfaces in superconductor metamaterials. Jetp Lett. 105, 130–136 (2017). https://doi.org/10.1134/S0021364017020060

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017020060

Navigation