Skip to main content
Log in

Nuclear modification factor for light and heavy flavors within pQCD and recent data from the LHC

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The flavor dependence of the nuclear modification factor R AA in the pQCD calculations at LHC energies has been examined. The computations are performed accounting for radiative and collisional parton energy loss with running coupling constant. Our results show that the recent LHC data on the R AA for charged hadrons, D-mesons, and non-photonic electrons agree reasonably with the pQCD picture of the parton energy loss with the dominating contribution from the radiative mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Baier, Y. L. Dokshitzer, A. H. Mueller, et al., Nucl. Phys. B 483, 291 (1997); Nucl. Phys. B 484, 265 (1997); R. Baier, Y. L. Dokshitzer, A. H. Mueller, and D. Schiff, Nucl. Phys. B 531, 403 (1998).

    Article  ADS  Google Scholar 

  2. B. G. Zakharov, JETP Lett. 63, 952 (1996); 65, 615 (1997); 70, 176 (1999); Phys. At. Nucl. 61, 838 (1998).

    Article  ADS  Google Scholar 

  3. R. Baier, D. Schiff, and B. G. Zakharov, Ann. Rev. Nucl. Part. 50, 37 (2000); arXiv:hep-ph/0002198.

    Article  ADS  Google Scholar 

  4. U. A. Wiedemann, Nucl. Phys. A 690, 731 (2001).

    Article  ADS  Google Scholar 

  5. M. Gyulassy, P. Lévai, and I. Vitev, Nucl. Phys. B 594, 371 (2001).

    Article  ADS  Google Scholar 

  6. P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 0206, 030 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  7. J. D. Bjorken, Fermilab preprint 82/59-THY (1982, unpublished).

  8. B. G. Zakharov, JETP Lett. 86, 444 (2007); arXiv:0708.0816.

    Article  ADS  MATH  Google Scholar 

  9. G. Y. Qin, J. Ruppert, C. Gale, et al., Phys. Rev. Lett. 100, 07230 (2008); arXiv:0710.0605.

    Google Scholar 

  10. Y. L. Dokshitzer and D. E. Kharzeev, Phys. Lett B 519, 199 (2001).

    Article  ADS  Google Scholar 

  11. S. S. Adler et al. (PHENIX Collab.), Phys. Rev. Lett. 96, 032301 (2006).

    Article  ADS  Google Scholar 

  12. B. I. Abelev et al. (STAR Collab.), Phys. Rev. Lett. 98, 192301 (2007); arXiv:nucl-ex/0607012; Phys. Rev. Lett. 106, 159902(E) (2011).

    Article  ADS  Google Scholar 

  13. A. Adare et al. (PHENIX Collab.), Phys. Rev. C 84, 044905 (2011); arXiv:1005.1627 [nucl-ex].

    Article  ADS  Google Scholar 

  14. S. Peigné and A. Peshier, Phys. Rev. D 77, 114017 (2008); arXiv:0802.4364; A. Meistrenko, A. Peshier, J. Uphoff, and C. Greiner, arXiv:1204.2397.

    Article  ADS  Google Scholar 

  15. P. Aurenche and B. G. Zakharov, JETP Lett. 90, 237 (2009); arXiv:0907.1918.

    Article  ADS  Google Scholar 

  16. CMS Collab., Eur. Phys. J. C 72 1945 (2012); arXiv:1202.2554.

    Article  ADS  Google Scholar 

  17. ALICE Collab., arXiv:1208.2711.

  18. B. Abelev et al. (ALICE Collab.), J. High Energy Phys. 1209, 112 (2012); arXiv:1203.2160.

    Article  ADS  Google Scholar 

  19. A. Grelli (for the ALICE Collab.), Contribution to the Quark Matter 2012 Conference. http://qm2012.bnl.gov/default.asp

  20. S. Sakai (for the ALICE Collab.), Contribution to the Quark Matter 2012 Conference. http://qm2012.bnl.gov/default.asp

  21. B. G. Zakharov, JETP Lett. 88, 781 (2008); arXiv:0811.0445.

    Article  ADS  Google Scholar 

  22. P. Aurenche and B. G. Zakharov, Eur. Phys. J. C 71, 1829 (2011); arXiv:1109.6819.

    Article  ADS  Google Scholar 

  23. A. Beraudo, J. G. Milhano, and U. A. Wiedemann, Phys. Rev. C 85, 031901 (2012); arXiv:1109.5025.

    Article  ADS  Google Scholar 

  24. T. Sjostrand, L. Lonnblad, S. Mrenna, and P. Skands, arXiv:hep-ph/0308153.

  25. B. G. Zakharov, JETP Lett. 80, 617 (2004); arXiv:hep-ph/0410321.

    Article  ADS  Google Scholar 

  26. R. Baier, Yu. L. Dokshitzer, A. H. Mueller, and D. Schiff, J. High Energy Phys. 0109, 033 (2001).

    Article  ADS  Google Scholar 

  27. B. A. Kniehl, G. Kramer, and B. Potter, Nucl. Phys. B 582, 514 (2000).

    Article  ADS  Google Scholar 

  28. A. H. Mahmood et al. (CLEO Collab.), Phys. Rev. D 70, 032003 (2004).

    Article  ADS  Google Scholar 

  29. R. Poling, invited talk at 4th Flavor Physics and CP Violation Conference, Vancouver, British Columbia, Canada, April 9–12, 2006, arXiv:hep-ex/0606016.

  30. M. Cacciari, P. Nason, and R. Vogt, Phys. Rev. Lett. 95, 122001 (2005).

    Article  ADS  Google Scholar 

  31. S. Kretzer, H. L. Lai, F. Olness, and W. K. Tung, Phys. Rev. D 69, 114005 (2004).

    Article  ADS  Google Scholar 

  32. K. J. Eskola, V. J. Kolhinen, and C. A. Salgado, Eur. Phys. J. C 9, 61 (1999).

    ADS  Google Scholar 

  33. P. Lévai and U. Heinz, Phys. Rev. C 57, 1879 (1998).

    Article  ADS  Google Scholar 

  34. O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510 (2005).

    Article  ADS  Google Scholar 

  35. N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 327, 149 (1994).

    Article  ADS  Google Scholar 

  36. Yu. L. Dokshitzer, V. A. Khoze, and S. I. Troyan, Phys. Rev. D 53, 89 (1996).

    Article  ADS  Google Scholar 

  37. B. G. Zakharov, JETP Lett. 93, 683 (2011); arXiv:1105.2028.

    Article  ADS  Google Scholar 

  38. K. Aamodt et al. (ALICE Collab.), Phys. Lett. B 696, 30 (2011).

    Article  ADS  Google Scholar 

  39. W. A. Horowitz and M. Gyulassy, Nucl. Phys. A 872, 265 (2011); arXiv:1104.4958.

    Article  ADS  Google Scholar 

  40. B. Betz and M. Gyulassy, Phys. Rev. C 86, 024903 (2012); arXiv:1201.0281.

    Article  ADS  Google Scholar 

  41. J. D. Bjorken, Phys. Rev. D 27, 140 (1983).

    Article  ADS  Google Scholar 

  42. S. Chatrchyan et al. (CMS Collab.), J. High Energy Phys. 1108, 141 (2011); arXiv:1107.4800.

    Article  ADS  Google Scholar 

  43. K. Aamodt et al. (ALICE Collab.), Phys. Rev. Lett. 106, 032301 (2011).

    Article  ADS  Google Scholar 

  44. B. Müller and K. Rajagopal, Eur. Phys. J. C 43, 15 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, B.G. Nuclear modification factor for light and heavy flavors within pQCD and recent data from the LHC. Jetp Lett. 96, 616–620 (2013). https://doi.org/10.1134/S002136401222016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401222016X

Keywords

Navigation