Skip to main content
Log in

Mathematical simulation of the influence of surface roughness and mass loss on thermal protection

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A mathematical model of the thermochemical destruction of carbon fiber-reinforced plastic in the presence of surface roughness and composite ablation is refined based on known theoretical results. It is shown that mass loss through rough surface ambiguously influences the intensity of heat exchange processes in thermal protective material. Results of numerical calculations are compared with known data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loitsyanskii, L.G., Mekhanika zhidkostei i gaza (Mechanics of Liquids and Gases), Moscow: Nauka, 1973.

    Google Scholar 

  2. Schlichting, H., Grenzschicht-Theorie (Theory of Boundary Layer), Karlsruhe: Braun, 1951.

    MATH  Google Scholar 

  3. Avduevskii, V.S., Galitseiskii, B.M., Glebov, G.A., et al., Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike (Fundamentals of Heat Transfer in Aviation and Rocket and Space Technology), Koshkin, V.K., Ed., Moscow: Mashinostroenie, 1975.

  4. Polezhaev, Yu.V. and Yurevich, F.B., Teplovaya zashchita (Thermal Protection), Moscow: Energiya, 1976.

    Google Scholar 

  5. Grishin, A.M., Golovanov, A.N., Zinchenko, V.I., Efimov, E.K., and Yakimov, A.S., Matematicheskoe i fizicheskoe modelirovanie teplovoi zashchity (Mathematical and Physical Simulation of Thermal Protection), Tomsk: Tomsk. Gos. Univ., 2011.

    Google Scholar 

  6. Welsh, W.E., AIAA J., 1970, no. 11, p. 1983.

    Article  ADS  Google Scholar 

  7. Nestler, D.E., AIAA J., 1971, no. 9, p. 1799.

    Article  ADS  Google Scholar 

  8. Laganelli, A.L. and Nestler, D.E., AIAA J., 1969, no. 7, p. 1319.

    Article  ADS  Google Scholar 

  9. Droblenkov, V.F., Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1955, no. 8, p. 17.

    Google Scholar 

  10. Stepanova, E.V. and Yakimov, A.S., High Temp., 2015, vol. 53, no. 2, p. 228.

    Article  Google Scholar 

  11. Gorskii, V.V. and Pugach, M.A., in Nauka i tekhnologii. Mater. XXXIV Vseros. konf., posvyashchennoi 90-letiyu so dnya rozhdeniya akad. V.P. Makeeva (Science and Technology: Proc. XXXIV All-Russian Conf. Dedicated to the 90th Anniversary of Acad. Makeev), Moscow: Ross. Akad. Nauk, 2014, p. 104.

    Google Scholar 

  12. Grishin, A.M. and Fomin, V.M., Sopryazhennye i nestatsionarnye zadachi mekhaniki reagiruyushchikh sred (Conjugate and Nonstationary Problems of the Mechanics of Reacting Media), Novosibirsk: Nauka, 1984.

    MATH  Google Scholar 

  13. Gorskii, V.V., Zabarko, D.A., and Olenicheva, A.A., High Temp., 2012, vol. 50, no. 2, p. 286.

    Article  Google Scholar 

  14. Golovanov, A.N., Combust., Explos. Shock Waves (Engl. Transl.), 1999, vol. 35, no. 3, p. 275.

    Article  Google Scholar 

  15. Vasilevskii, K.K. and Fedorov, O.G., in Teplomassoperenos (Heat and Mass Transfer), Minsk: Nauka i Tekhnika, 1968, vol. 2, p. 67.

    Google Scholar 

  16. Samarskii, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction to the Theory of Difference Schemes), Moscow: Nauka, 1971.

    Google Scholar 

  17. Buchnev, L.M., Smyslov, A.I., Dmitriev, I.A., et al., Teplofiz. Vys. Temp., 1987, vol. 25, no. 6, p. 1120.

    Google Scholar 

  18. Grishin, A.M., Parashin, A.D., and Yakimov, A.S., Combust., Explos. Shock Waves (Engl. Transl.), 1993, vol. 29, no. 1, p. 82.

    Article  Google Scholar 

  19. Karapet’yants, M.Kh. and Karapet’yants, M.M., Osnovnye termodinamicheskie konstanty neorganicheskikh i organicheskikh veshchestv (Basic Thermodynamic Constants of Inorganic and Organic Substances), Moscow: Khimiya, 1968.

    Google Scholar 

  20. Golovanov, A.N., Zima, V.P., and Stepanova, E.V., USSR Inventor’s Certificate no. 2481239, Byull. Izobret., 2013, no.13.

    Google Scholar 

  21. Zima, V.P. and Stepanova, E.V., Abstracts of Papers, Vseross. shkoly-konf. s mezhdunarodnym uchastiem “Aktual’nye voprosy teplofiziki i fizicheskoi gidrogazodinamiki” (All-Russian Conf. with Int. Participants on Actual Problems of Thermophysics and Physical Hydrodynamics), Novosibirsk: Inst. Teplofiz., Sib. Otd., Ross. Akad. Nauk, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Yakimov.

Additional information

Original Russian Text © V.A. Ovchinnikov, A.S. Yakimov, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 5, pp. 800–805.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, V.A., Yakimov, A.S. Mathematical simulation of the influence of surface roughness and mass loss on thermal protection. High Temp 55, 782–787 (2017). https://doi.org/10.1134/S0018151X17040162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17040162

Navigation