Skip to main content
Log in

High-temperature carbonization of humic acids and a composite of humic acids with graphene oxide

  • Nanostructured Systems and Materials
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Humic acids (HAs) isolated from high-moor peat have been studied by magic-angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TG), and Raman spectroscopy. A composite of HAs with graphene oxide (GO) has been prepared for the first time, and the thermal carbonization (900°C) of both HAs and the HA–GO composite has been carried out. With the use of mass spectrometry, it has been found that CO2 and H2O molecules are mainly released from HAs into the gas phase at a low temperature (to 150°C). At higher temperatures, carbon monoxide and different low-molecular-weight hydrocarbons also begin to be released. From microscopic examinations, it follows that HA forms small agglomerates with sharply outlined edges as a result of carbonization, whereas the composite forms only large aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostrovskii, V.S. and Virgil’ev, V.I., Iskusstvennyi grafit (Synthetic Graphite), Moscow: Metallurgiya, 1986.

    Google Scholar 

  2. Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.M., Fuhner, C., Bens, O., Kern, J., and Emmerich, K.-H., Biofuels, 2011, vol. 2, no. 1, p. 89.

    Article  Google Scholar 

  3. Groenli, M.G., Varhegyi, G., and Di Blasi, C., Ind. Eng. Chem. Res., 2002, vol. 41, p. 4201.

    Article  Google Scholar 

  4. Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., and Chen, Y., ACS Nano, 2008, vol. 2, no. 3, p. 463.

    Article  CAS  Google Scholar 

  5. Shulga, Y.M., Martynenko, V.M., Muradyan, V.E., Smirnov, V.A., and Gutsev, G.L., Chem. Phys. Lett., 2010, vol. 498, p. 287.

    Article  CAS  Google Scholar 

  6. Bissessur, R., Liu, P.K.Y., White, W., and Scully, S.F., Langmuir, 2006, vol. 22, p. 1720.

    Article  Google Scholar 

  7. McAllister, M.J., Li, J., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., HerreraAlonso, M., Milius, D.L., Car, R., Prud’homme, R.K., and Aksay, I., Chem. Mater., 2007, vol. 19, p. 4396.

    Article  CAS  Google Scholar 

  8. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., Carbon, 2007, vol. 45, p. 1558.

    Article  CAS  Google Scholar 

  9. Gomez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., and Kern, K., Nano Lett., 2007, vol. 7, p. 3499.

    Article  CAS  Google Scholar 

  10. Cote, L.J., Cruz-Silva, R., and Huang, J., J. Am. Chem. Soc., 2009, vol. 131, p. 11027.

    Article  CAS  Google Scholar 

  11. Zhu, Y., Stoller, M.D., Cai, W., Velamakanni, A., Piner, R.D., Chen, D., and Ruoff, R.S., ACS Nano, 2010, vol. 4, no. 2, p. 1227.

    Article  CAS  Google Scholar 

  12. Seung Hun Huh, Physics and Applications of Graphene—Experiments, Mikhailov, S., Ed., Rijeka: InTech, 2011, p. 73. http://www.intechopen.com/books/physics-and-applications-of-graphene-experiments/thermal_reduction_of_graphene_oxide

  13. Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., and Ruoff, R.S., Carbon, 2010, vol. 48, p. 2118.

    Article  CAS  Google Scholar 

  14. Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., and Stach, E.A., Ruoff, Science, 2011, vol. 332, p. 1537.

    Article  CAS  Google Scholar 

  15. Shulga, Y.M., Baskakov, S.A., Knerelman, E.I., Davidova, G.I., Badamshina, E.R., Shulga, N.Y., Skryleva, E.A., Agapov, A.L., Voylov, D.N., Sokolov, A.P., and Martynenko, V.M., RSC Adv., 2014, vol. 4, p. 587.

    Article  CAS  Google Scholar 

  16. Paciolla, M.D., Davies, G., and Jansen, S.A., Environ. Sci. Technol., 1999, vol. 33, p. 1814.

    Article  CAS  Google Scholar 

  17. Gerse, J., Kremo, R., Csicsor, J., and Pinter, L., in Humic Substances in the Global Environment and Implications on Human Health, Senesi, M, Ed., Amsterdam: Elsevier, 1994, p. 1297.

  18. Petrosyan, G.P., Aranbaev, M.P., and Grigoryan, F.A., in Proceedings of the Fourth International Conference on Thermal Analysis, Buzas, I, Ed., Budapest, 1974, vol. 2, p. 745.

    Google Scholar 

  19. Campanella, L., Tomassetti, M., and Piccolo, A., Thermochim. Acta, 1990, vol. 170, p. 67.

    Article  CAS  Google Scholar 

  20. Peuravuori, J., Paaso, N., and Pihlaja, K., Thermochim. Acta, 1999, vol. 325, p. 181.

    Article  CAS  Google Scholar 

  21. Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  CAS  Google Scholar 

  22. Barron, P.F. and Wilson, M.A., Nature, 1981, vol. 289, p. 275.

    Article  CAS  Google Scholar 

  23. Sullivan, M.J. and Maciel, G.E., Anal. Chem., 1982, vol. 54, p. 1608.

    Google Scholar 

  24. Tekely, P., Nicole, D., Brondeau, J., and Delpuech, J.-J., J. Phys. Chem., 1986, vol. 90, p. 5608.

    Article  CAS  Google Scholar 

  25. Lukins, P.B., McKenzie, D.R., Vassallo, A.M., and Hanna, J.V., Carbon, 1993, vol. 31, p. 569.

    Article  CAS  Google Scholar 

  26. Sharma, R.K., Wooten, J.B., Baliga, V.L., and Hajaligol, M.R., Fuel, 2001, vol. 80, p. 1825.

    Article  CAS  Google Scholar 

  27. Holtman, K.M., Chang, H.-M., Jameel, H., and Kadla, J.F., J. Wood Chem. Technol., 2006, vol. 26, p. 21.

    Article  CAS  Google Scholar 

  28. Cai, W., Piner, R.D., Stadermann, F.J., Park, S., Shaibat, M.A., Ishii, Y., Yang, D., Velamakanni, A., An, S.J., Stoller, M., An, J., Chen, D., and Ruoff, R.S, Science, 2008, vol. 321, p. 1815.

    Article  CAS  Google Scholar 

  29. Shul’ga, Yu.M., Lobach, A.S., Baskakov, S.A., Spitsyna, N.G., Martynenko, V.M., Ryzhkov, A.V., Sokolov, V.B., Maslakov, K.I., Dement’ev, A.P., Eletskii, A.V., Kazakov, V.A., Sigalaev, S.K., Rizakhanov, R.N., and Shulga, N.Yu., High Energy Chem., 2013, vol. 47, no. 6, p. 331.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Shul’ga.

Additional information

Original Russian Text © S.A. Baskakov, A.S. Lobach, S.G. Vasil’ev, N.N. Dremova, V.M. Martynenko, A.A. Arbuzov, Yu.V. Baskakova, A.A. Volodin, V.I. Volkov, V.A. Kazakov, Yu.M. Shul’ga, 2016, published in Khimiya Vysokikh Energii, 2016, Vol. 50, No. 1, pp. 46–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskakov, S.A., Lobach, A.S., Vasil’ev, S.G. et al. High-temperature carbonization of humic acids and a composite of humic acids with graphene oxide. High Energy Chem 50, 43–50 (2016). https://doi.org/10.1134/S0018143916010021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143916010021

Keywords

Navigation