Skip to main content
Log in

Transgenerational genomic instability in the first generation offspring of mice exposed to low-intensity red and near-infrared irradiation in vivo

  • Biophysics of Complex Systems
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Transgenerational genomic instability in the first generation offspring of mice exposed to lowintensity infrared laser (632.8 nm) and light-emitting-diode infrared irradiation (850 nm) was investigated in vivo. It was found that the level of spontaneous damage in bone marrow according to the micronucleus test, the level of reactive oxygen species in whole blood, and the mass index of lymphoid organs in all of the descendants of irradiated mice did not increase. After additional X-ray exposure of the progeny at a dose rate of 1.5 Gy, a decrease in the level of damage and the absence of an adaptive response were revealed upon testing according to “radiosensitivity” and the radiation-induced adaptive-response scheme (0.1 + 1.5 Gy), respectively, compared to the descendants of nonirradiated mice. The rate of tumor growth in the offspring of irradiated mice did not differ from that in the descendants of nonirradiated mice, although inhibition of the tumor growth rate was observed in their irradiated parents. The survival rate after irradiation at a dose rate of 6.5 Gy did not differ from both the parents and the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IRL:

infrared light

ROS:

reactive oxygen species

PCPE:

polychromatophylic erythroblasts

References

  1. S. I. Zaichkina, D. Yu. Klokov, O. M. Rozanova, et al., Russ. J. Genet. 34 (7), 846 (1998).

    Google Scholar 

  2. S. I. Zaichkina, A. R. Dyukina, O. M. Rozanova, et al., Bull. Exp. Biol. Med. 161 (5), 679 (2016).

    Article  Google Scholar 

  3. E. G. Novoselova, D. A. Cherenkov, O. V. Glushkova, et al., Biophysics (Moscow) 51 (3), 457 (2006).

    Article  Google Scholar 

  4. A. B. Geinits, S. V. Moskvin, and A. A. Achilov, in Intravenous Laser Irradiation of Blood (Tver, 2008), p. 144 [in Russian].

    Google Scholar 

  5. Y. E. Dubrova, M. Plumb, J. Brown, et al., Int. J. Radiat. Biol. 74 (6), 689 (1998).

    Article  Google Scholar 

  6. L. A. Fomenko, G. V. Vasiljeva, and V. G. Bezlepkin, Biol. Bull. (Moscow) 28 (4), 350 (2001).

    Article  Google Scholar 

  7. B. Ponnaiya, M. N. Cornforth, and R. L. Ullrich, Radiat. Res. 147 (3), 288 (1997).

    Article  ADS  Google Scholar 

  8. L. A. Fomenko, M. G. Lomaeva, V. G. Bezlepkin, et al., Radiat. Biol. Radioekol. 46 (4), 431 (2006).

    Google Scholar 

  9. W. Schmid, Mutat. Res. 31 (1), 9 (1975).

    Article  Google Scholar 

  10. S. I. Zaichkina, O. M. Rozanova, A. R. Dyukina, et al., Biophysics (Moscow) 58 (5), 712 (2013).

    Article  Google Scholar 

  11. A. R. Dyukina, S. I. Zaichkina, O. M. Rozanova, et al., Med. Fiz. 64 (4), 37 (2014).

    Google Scholar 

  12. E. Yu. Lizunova, N. Yu. Vorob’eva, D. V. Gur’ev, et al., in Radiobiology, Radioecology, and Radiation Safety: Abstr. VI Radiatio Reserarch Congress (RUDN, Moscow, 2010), p. 159.

    Google Scholar 

  13. T. Karu, L. Pyatibrat, and G. Kalendo, Int. J. Radiat. Biol. 65 (6), 691 (1994).

    Article  Google Scholar 

  14. N. Grossman, N. Schneid, H. Reuveni, et al., Lasers Surg. Med. 22 (4), 212 (1998).

    Article  Google Scholar 

  15. D. Pastore, M. Greco, and S. Passarella, Int. J. Radiat. Biol. 76 (6), 863 (2000).

    Article  Google Scholar 

  16. J. T. Elles, M. T. Wong-Riley, J. VerHoeve, et al., Mitochondrion 4 (5–6), 559 (2004).

    Article  Google Scholar 

  17. H. L. Liang, H. T. Whelan, J. T. Ealls, et al., Neuroscience 139 (2), 639 (2006).

    Article  Google Scholar 

  18. E. V. Kozyreva, N. N. Eliseenko, Radiat. Biol. Radioekol. 42 (6), 632 (2002).

    Google Scholar 

  19. I. G. Lyandres, in Mechanisms for Stimulating Low- Intensity Laser Radiation (Ekonomicheskaya Tekhnologiya, Minsk, 1998), p. 116 [in Russian].

    Google Scholar 

  20. V. M. Chudnovskii, G. N. Leonova, S. A. Skopinov, et al., in Biological Models and Physical Mechanisms of Laser Therapy (Dal’nauka, Vladivostok, 2002), p. 157 [in Russian].

    Google Scholar 

  21. C. R. Hunt, D. J. Dix, G. G. Sharma, et al., Mol. Cell. Biol. 24 (2), 899 (2004).

    Article  Google Scholar 

  22. Y. E. Dubrova, P. Hickenbotham, C. D. Glen, et al., Environ. Mol. Mutagen 49 (4), 308 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Zaichkina.

Additional information

Original Russian Text © S.I. Zaichkina, A.R. Dyukina, O.M. Rozanova, S.P. Romanchenko, N.B. Simonova, S.S. Sorokina, V.I. Yusupov, V.N. Bagratashvili, 2017, published in Biofizika, 2017, Vol. 62, No. 5, pp. 1016–1022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaichkina, S.I., Dyukina, A.R., Rozanova, O.M. et al. Transgenerational genomic instability in the first generation offspring of mice exposed to low-intensity red and near-infrared irradiation in vivo. BIOPHYSICS 62, 836–841 (2017). https://doi.org/10.1134/S0006350917050244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917050244

Keywords

Navigation