Skip to main content
Log in

Genome Editing and the Problem of Tetraploidy in Cell Modeling of the Genetic Form of Parkinsonism

  • Mini-Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The prevalent form of familial parkinsonism is caused by mutations in the LRRK2 gene encoding for the mitochondrial protein kinase. In the review, we discuss possible causes of appearance of tetraploid cells in neuronal precursors obtained from induced pluripotent stem cells from patients with the LRRK2-associated form of parkinsonism after genome editing procedure. As LRRK2 protein participates in cell proliferation and maintenance of the nuclear envelope, spindle fibers, and cytoskeleton, mutations in the LRRK2 gene can affect protein functions and lead, via various mechanisms, to the mitotic machinery disintegration and chromosomal aberration. These abnormalities can appear at different stages of fibroblast reprogramming; therefore, editing of the LRRK2 nucleotide sequence should be done during or before the reprogramming stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATM:

ataxia telangiectasia mutated

iPSCs:

induced pluripotent stem cells

PD:

Parkinson’s disease

References

  1. De Lau, L. M. L., and Breteler, M. M. B. (2006) Epidemiology of Parkinson’s disease, Lancet Neurol., 5, 525–535.

    Article  PubMed  Google Scholar 

  2. Hernandez, D. G., Reed, X., and Singleton, A. B. (2016) Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance, J. Neurochem., 139 (Suppl. 1), 59–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Singleton, A. B., Farrer, M. J., and Bonifati, V. (2013) The genetics of Parkinson’s disease: progress and therapeutic implications, Mov. Disord., 28, 14–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Poewe, W., Seppi, K., and Tanner, C. M. (2017) Parkinson disease, Nat. Rev. Dis. Primers, 3, 17013.

    Article  PubMed  Google Scholar 

  5. Jenner, P., Morris, H. R., Robbins, T. W., Goedert, M., Hardy, J., Ben-Shlomo, Y., Bolam, P., Burn, D., Hindle, J. V., and Brooks, D. (2013) Parkinson’s disease-the debate on the clinical phenomenology, etiology, pathology and pathogenesis, J. Parkinson’s Dis., 3, 1–11.

    CAS  Google Scholar 

  6. Kang, J. F., Tang, B. S., and Guo, J. F. (2016) The progress of induced pluripotent stem cells as models of Parkinson’s disease, Stem Cells Int., 2016, 4126214.

    PubMed  PubMed Central  Google Scholar 

  7. Holmqvist, S., Lehtonen, S., Chumarina, M., Puttonen, K. A., Azevedo, C., Lebedeva, O., Ruponen, M., Oksanen, M., Djelloul, M., Collin, A., Goldwurm, S., Meyer, M., Lagarkova, M., Kiselev, S., Koistinaho, J., and Roybon, L. (2016) Creation of a library of induced pluripotent stem cells from Parkinsonian patients, NPJ Parkinson’s Dis., 2, 16009.

    Article  Google Scholar 

  8. Illarioshkin, S. N., Khaspekov, L. G., and Grivennikov, I. A. (2017) Modeling of Parkinson’s Disease with Induced Pluripotent Stem Cells [in Russian], ZAO RKI Sovero Press, Moscow.

    Google Scholar 

  9. Hargus, G., Cooper, O., Deleidi, M., Levy, A., Lee, K., Marlow, E., Yow, A., Soldner, F., Hockemeyer, D., Hallett, P. J., Osborn, T., Jaenisch, R., and Isacson, O. (2010) Differentiated Parkinson patient-derived induced pluripotent cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats, Proc. Natl. Acad. Sci. USA, 107, 15921–15926.

    Article  PubMed  Google Scholar 

  10. Cornu, T., Mussolino, C., and Cathomen, T. (2017) Refining strategies to translate genome editing to the clinic, Nature Med., 23, 415–423.

    Article  PubMed  CAS  Google Scholar 

  11. Healy, D. G., Falchi, M., O’Sullivan, S. S., Bonifati, V., Durr, A., Bressman, S., Brice, A., Aasly, J., Zabetian, C. P., Goldwurm, S., Ferreira, J. J., Tolosa, E., Kay, D. M., Klein, C., Williams, D. R., Marras, C., Lang, A. E., Wszolek, Z. K., Berciano, J., Schapira, A. H., Lynch, T., Bhatia, K. P., Gasser, T., Lees, A. J., and Wood, N. W. (2008) International LRRK2 Consortium. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study, Lancet Neurol., 7, 583–590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dachsel, J. C., Behrouz, B., Yue, M., Beevers, J. E., Melrose, H. L., and Farrer, M. J. (2010) A comparative study of LRRK2 function in primary neuronal cultures, Parkinsonism Relat. Disord., 16, 650–655.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tong, Y., Giaime, E., Yamaguchi, H., Ichimura, T., Liu, Y., Si, H., Cai, H., Bonventre, J. V., and Shen, J. (2012) Loss of leucine-rich repeat kinase 2 causes age-dependent biphasic alterations of the autophagy pathway, Mol. Neurodegener., 7,2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vetchinova, A. S., Simonova, V. V., Novosadova, E. V., Manuilova, E. S., Nenasheva, V. V., Tarantul, V. Z., Grivennikov, I. A., Khaspekov, L. G., and Illarioshkin, S. N. (2018) Cytogenetic analysis of results of the genome editing on the cell model of the Parkinson’s disease, Byul. Eksp. Biol. Med., 3, 355–359.

    Google Scholar 

  15. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819–823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Vasil’eva, E. A., Melino, D., and Barlev, N. A. (2015) Application of the directed genomic editing system CRISPR/Cas to pluripotent stem cells, Tsitologiya, 1, 19–30.

    Google Scholar 

  17. Zanet, J., Freije, A., Ruiz, M., Coulon, V., Sanz, J. R., Chiesa, J., and Gandarillas, A. (2010) A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication, PLoS One, 5, e15701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Davoli, T., and de Lange, T. (2011) The causes and consequences of polyploidy in normal development and cancer, Annu. Rev. Cell Dev. Biol., 27, 585–610.

    Article  PubMed  CAS  Google Scholar 

  19. Mosch, B., Morawski, M., Mittag, A., Lenz, D., Tarnok, A., and Arendt, T. (2007) Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease, J. Neurosci., 27, 6859–6867.

    Article  PubMed  CAS  Google Scholar 

  20. Frade, J. M. (2010) Somatic tetraploidy in vertebrate neurons: implications in physiology and pathology, Commun. Integr. Biol., 3, 201–203.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ganem, N. J., Storchova, Z., and Pellman, D. (2007) Tetraploidy: aneuploidy and cancer, Curr. Opin. Genet. Dev., 17, 157–162.

    Article  PubMed  CAS  Google Scholar 

  22. Joglekar, A. P. (2016) A cell biological perspective on past, present and future investigations of the spindle assembly checkpoint, Biology (Basel), 5, E44.

    Google Scholar 

  23. Holland, A. J., and Cleveland, D. W. (2012) Losing balance: the origin and impact of aneuploidy in cancer, EMBO Rep., 13, 501–514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Marechal, A., and Zou, L. (2013) DNA damage sensing by the ATM and ATR kinases, Cold Spring Harb. Perspect. Biol., 5, a012716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Davoli, T., Denchi, E. L., and de Lange, T. (2010) Persistent telomere damage induces bypass of mitosis and tetraploidy, Cell, 41, 81–93.

    Article  CAS  Google Scholar 

  26. Chen, Z., Cao, Z., Zhang, W., Gu, M., Dong Zhou, Z., Li, B., Li, J., King Tan, E., and Zeng, L. (2017) LRRK2 interacts with ATM and regulates Mdm2-p53 cell proliferation axis in response to genotoxic stress, Hum. Mol. Genet., 26, 4494–4505.

    Article  PubMed  CAS  Google Scholar 

  27. Kemp, K., Wilkins, A., and Scolding, N. (2014) Cell fusion in the brain: two cells forward, one cell back, Acta Neuropathol., 128, 629–638.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Coskun, P. E., and Busciglio, J. (2012) Oxidative stress and mitochondrial dysfunction in Down’s syndrome: relevance to aging and dementia, Curr. Gerontol. Geriatr. Res., 2012, 383170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Greaves, L. C., Reeve, A. K., Taylor, R. W., and Turnbul, D. M. (2012) Mitochondrial DNA and disease, J. Pathol., 226, 274–286.

    Article  PubMed  CAS  Google Scholar 

  30. Sanders, L. H., Laganiere, J., Cooper, O., Mak, S. K., Vu, B. J., Huang, Y. A., Paschon, D. E., Vangipuram, M., Sandarajan, R., Urnov, F. D., Langston, J. W., Gregory, P. D., Zhang, H. S., Greenamyre, J. T., Isacson, O., and Schule, B. (2014) LRRK2 mutations cause mitochondrial DNA damage in iPS-derived neural cells from Parkinson’s disease patients: reversal by gene correction, Neurobiol. Dis., 62, 381–386.

    Article  PubMed  CAS  Google Scholar 

  31. Gentric, G., Maillet, V., Paradis, V., Couton, D., L’Hermitte, A., Panasyuk, G., Fromenty, B., Celton-Morizur, S., and Desdouets, C. (2015) Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease, J. Clin. Invest., 125, 981–992.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dephoure, N., Hwang, S., O’Sullivan, C., Dodgson, S. E., Gygi, S. P., Amon, A., and Torres, E. M. (2014) Quantitative proteomic analysis reveals post-translational responses to aneuploidy in yeast, Elife, 3, e03023.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Orenstein, S. J., Kuo, S.-H., Tasset, I., Arias, E., Koga, H., Fernandez-Carasa, I., Cortes, E., Honig, L. S., Dauer, W., Consiglio, A., Raya, A., Sulzer, D., and Cuervo, A. M. (2013) Interplay of LRRK2 with chaperone-mediated autophagy, Nat. Neurosci., 16, 394–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nguyen, H. N., Byers, B., Cord, B., Shcheglovitov, A., Byrne, J., Gujar, P., Kee, K., Schule, B., Dolmetsch, R. E., Langston, W., Palmer, T. D., and Pera, R. R. (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress, Cell Stem Cell, 8, 267–280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cooper, O., Seo, H., Andrabi, S., Guardia-Laguarta, C., Graziotto, J., Sundberg, M., McLean, J. R., Carrillo-Reid, L., Xie, Z., Osborn, T., Hargus, G., Deleidi, M., Lawson, T., Bogetofte, H., Perez-Torres, E., Clark, L., Moskowitz, C., Mazzulli, J., Chen, L., Volpicelli-Daley, L., Romero, N., Jiang, H., Uitti, R. J., Huang, Z., Opala, G., Scarffe, L. A., Dawson, V. L., Klein, C., Feng, J., Ross, O. A., Trojanowski, J. Q., Lee, V. M., Marder, K., Surmeier, D. J., Wszolek, Z. K., Przedborski, S., Krainc, D., Dawson, T. M., and Isacson, O. (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease, Sci. Transl. Med., 4, 141ra90.

    Article  CAS  Google Scholar 

  36. Padlesnig, P., Vilas, D., Taylor, P., Shaw, L. M., Tolosa, E., and Trullas, R. (2016) Mitochondrial DNA in CSN distinguishes LRRK2 from idiopathic Parkinson’s disease, Neurobiol. Dis., 94, 10–17.

    Article  CAS  Google Scholar 

  37. Ho, C. Y., and Lammerding, J. (2012) Lamins at a glance, J. Cell Sci., 125, 2087–2093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gonzalo, S. (2014) DNA damage and lamins, Adv. Exp. Med. Biol., 773, 377–399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu, G.-H., Qu, J., Suzuki, K., Nive, E., Li, M., Montserrat, N., Yi, F., Xu, X., Ruiz, S., Zhang, W., Wagner, U., Kim, A., Ren, B., Li, Y., Goebl, A., Kim, J., Soligalla, R. D., Dubova, I., Thompson, J., Yates, J., 3rd, Esteban, C. R., Sancho-Martinez, I., and Belmonte, J. C. I. (2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2 mutations, Nature, 491, 603–607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. McClatchey, A. I. (2014) ERM proteins at a glance, J. Cell Sci., 127, 3199–3204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gandhi, P. N., Wang, X., Zhu, X., Chen, S. G., and Wilson-Delfosse, A. L. (2008) The Roc domain of leucinerich repeat kinase 2 is sufficient for interaction with micro-tubules, J. Neurosci. Res., 86, 1711–1720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gillardon, F. (2009) Leucine-rich repeat kinase 2 phospho-rylates brain tubulin-beta isoforms and modulates micro-tubule stability - a point of convergence in parkinsonian neurodegeneration? J. Neurochem., 110, 1514–1522.

    Article  PubMed  CAS  Google Scholar 

  43. Parisiadou, L., and Cai, H. (2010) LRRK2 function on actin and microtubule dynamics in Parkinson disease, Commun. Integr. Biol., 3, 396–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Agalliu, I., San Luciano, M., Mirelman, A., Giladi, N., Waro, B., Aasly, J., Inzelberg, R., Hassin-Baer, S., Friedman, E., Ruiz-Martinez, J., Marti-Masso, J. F., Orr-Urtreger, A., Bressman, S., and Saunders-Pullman, R. (2015) Higher frequency of certain cancers in LRRK2 G2019S mutation carriers with Parkinson’s disease: a pooled analysis, JAMA Neurol., 72, 58–65.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Saunders-Pullman, R., Barrett, M. J., Stanley, K., Luciano, M. S., Shanker, V., Severt, L., Hunt, A., Raymond, D., Ozelius, L. J., and Bressman, S. B. (2010) LRRK2 G2019S mutations are associated with an increased cancer risk in Parkinson disease, Mov. Disord., 25, 2536–2541.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nichols, R. J., Dzamko, N., Hutti, J. E., Cantley, L. C., Deak, M., Moran, J., Bamborough, P., Reith, A. D., and Alessi, D. R. (2009) Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson’s disease, Biochem. J., 424, 47–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Liou, G. Y., and Gallo, K. A. (2009) New biochemical approaches towards understanding the Parkinson’s disease-associated kinase, LRRK2, Biochem. J., 424, 1–3.

    Article  CAS  Google Scholar 

  48. Lee, S.-Y., and Chung, S.-K. (2016) Integrating gene correction in the reprogramming and transdifferentiation processes: a one-step strategy to overcome stem cell-based gene therapy limitations, Stem Cells Intern., 2016, 2725670.

    Google Scholar 

  49. Dekel-Naftali, M., Aviram-Goldring, A., Litmanovich, T., Shamash, J., Reznik-Wolf, H., Laevsky, I., Amit, M., Itskovitz-Eldor, J., Yung, Y., Hoyrvitz, A., Schiff, E., and Rienstein, S. (2012) Screening of human pluripotent stem cells using CGH and FISH reveals low-grade mosaic aneuploidy and a recurrent amplification of chromosome 1q, Eur. J. Hum. Genet., 20, 1248–1255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gore, A., Li, Z., Fung, H.-L., Young, J. E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M. A., Kiskinis, E., Lee, J. H., Loh, Y. H.,, Manos, P. D., Montserrat, N., Panopoulos, A. D., Ruiz, S., Wilbert, M. L., Yu, J., Kirkness, E. F., Izpisua Belmonte, J. C., Rossi, D. J., Thomson, J. A., Eggan, K., Daley, G. Q., Goldstein, L. S., and Zhang, K. (2011) Somatic coding mutation in human induced pluripotent stem cells, Nature, 471, 63–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hussein, S. M., Batada, N. N., Vuoristo, S., Ching, R. W., Autio, R., Narva, E., Ng, S., Sourour, M., Hamalainen, R., Olsson, C., Lundin, K., Mikkola, M., Trokovic, R., Peitz, M., Brustle, O., Bazett-Jones, D. P., Alitalo, K., Lahesmaa, R., Nagy, A., and Otonkoski, T. (2012) Copy number variation and selection during reprogramming to pluripotency, Nature, 471, 58–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Illarioshkin.

Additional information

Original Russian Text © V. V. Simonova, A. S. Vetchinova, E. V. Novosadova, L. G. Khaspekov, S. N. Illarioshkin, 2018, published in Biokhimiya, 2018, Vol. 83, No. 9, pp. 1311–1317.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonova, V.V., Vetchinova, A.S., Novosadova, E.V. et al. Genome Editing and the Problem of Tetraploidy in Cell Modeling of the Genetic Form of Parkinsonism. Biochemistry Moscow 83, 1040–1045 (2018). https://doi.org/10.1134/S0006297918090055

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918090055

Keywords

Navigation