Skip to main content
Log in

Molecular modeling studies of substrate binding by penicillin acylase

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Molecular modeling has revealed intimate details of the mechanism of binding of natural substrate, penicillin G (PG), in the penicillin acylase active center and solved questions raised by analysis of available X-ray structures, mimicking Michaelis complex, which substantially differ in the binding pattern of the PG leaving group. Three MD trajectories were launched, starting from PDB complexes of the inactive mutant enzyme with PG (1FXV) and native penicillin acylase with sluggishly hydrolyzed substrate analog penicillin G sulfoxide (1GM9), or from the complex obtained by PG docking. All trajectories converged to a similar PG binding mode, which represented the near-to-attack conformation, consistent with chemical criteria of how reactive Michaelis complex should look. Simulated dynamic structure of the enzyme-substrate complex differed significantly from 1FXV, resembling rather 1GM9; however, additional contacts with residues bG385, bS386, and bN388 have been found, which were missing in X-ray structures. Combination of molecular docking and molecular dynamics also clarified the nature of extremely effective phenol binding in the hydrophobic pocket of penicillin acylase, which lacked proper explanation from crystallographic experiments. Alternative binding modes of phenol were probed, and corresponding trajectories converged to a single binding pattern characterized by a hydrogen bond between the phenol hydroxyl and the main chain oxygen of bS67, which was not evident from the crystal structure. Observation of the trajectory, in which phenol moved from its steady bound to pre-dissociation state, mapped the consequence of molecular events governing the conformational transitions in a coil region a143-a146 coupled to substrate binding and release of the reaction products. The current investigation provided information on dynamics of the conformational transitions accompanying substrate binding and significance of poorly structured and flexible regions in maintaining catalytic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MD:

molecular dynamics

PA:

penicillin acylase

PG:

penicillin G

PGSO:

penicillin G sulfoxide

RHF:

Restricted Hartree-Fock method

RMSD:

root mean square deviation

RMSF:

root mean square fluctuation

References

  1. Rolinson, G. N., Batchelor, F. R., Butterworth, D., Cameron-Wood, J., Cole, M., Eustace, G. C., Hart, M. V., Richards, M., and Chain, E. B. (1960) Nature, 187, 236–237.

    Article  CAS  PubMed  Google Scholar 

  2. Margolin, A. L., Švedas, V. K., and Berezin, I. V. (1980) Biochim. Biophys. Acta, 616, 283–289.

    CAS  PubMed  Google Scholar 

  3. Roa, A., Castillon, M. P., Goble, M. L., Virden, R., and Garcia, J. L. (1995) Biochem. Biophys. Res. Commun., 206, 629–636.

    Article  CAS  PubMed  Google Scholar 

  4. Bruggink, A., Roos, E. C., and de Vroom, E. (1998) Org. Process Res. Dev., 2, 128–133.

    Article  CAS  Google Scholar 

  5. Švedas, V. K., Savchenko, M. V., Beltser, A. I., and Guranda, D. F. (1996) Ann. N.-Y. Acad. Sci., 799, 659–669.

    Article  PubMed  Google Scholar 

  6. Guranda, D. T., van Langen, L. M., van Rantwijk, F., Sheldon, R. A., and Švedas, V. K. (2001) Tetrahedron: Asymmetry, 12, 1645–1650.

    Article  CAS  Google Scholar 

  7. Chilov, G. G., and Švedas, V. K. (2002) Can. J. Chem., 80, 699–707.

    Article  CAS  Google Scholar 

  8. Ferreira, J. S., Straathof, A. J. J., Franco, T. T., and van der Wielen, L. A. M. (2004) J. Mol. Catalysis B: Enzymatic, 27, 29–35.

    Article  CAS  Google Scholar 

  9. Chilov, G. G., Moody, H. M., Boesten, W. H. J., and Švedas, V. K. (2003) Tetrahedron: Asymmetry, 14, 2613–2617.

    Article  CAS  Google Scholar 

  10. Duggleby, H. J., Tolley, S. P., Hill, C. P., Dodson, E. J., Dodson, G., and Moody, P. C. (1995) Nature, 373, 264–268.

    Article  CAS  PubMed  Google Scholar 

  11. Brannigan, J. A., Dodson, G., Duggleby, H. J., Moody, P. C., Smith, J. L., Tomchick, D. R., and Murzin, A. G. (1995) Nature, 378, 416–419.

    Article  CAS  PubMed  Google Scholar 

  12. Done, S. H., Brannigan, J. A., Moody, P. C. E., and Hubbard, R. E. (1998) J. Mol. Biol., 284, 463–475.

    Article  CAS  PubMed  Google Scholar 

  13. Alkema, W. B. L., Hensgens, C. M. H., Kroezinga, E. H., de Vries, E., Floris, R., van der Laan, J.-M., Dijkstra, B. W., and Janssen, D. B. (2000) Protein Eng., 13, 857–863.

    Article  CAS  PubMed  Google Scholar 

  14. McVey, C. E., Walsh, M. A., Dodson, G. G., Wilson, K. S., and Brannigan, J. (2001) J. Mol. Biol., 313, 139–150.

    Article  CAS  PubMed  Google Scholar 

  15. Berendsen, H. J. C., van der Spoel, D., and van Drunen, R. (1995) Comp. Phys. Comm., 91, 43–56.

    Article  CAS  Google Scholar 

  16. Lindahl, E., Hess, B., and van der Spoel, D. (2001) J. Mol. Mod., 7, 306–317.

    CAS  Google Scholar 

  17. Jorgensen, W. L., and Tirado-Rives, J. (1988) J. Am. Chem. Soc., 110, 1657–1666.

    Article  CAS  Google Scholar 

  18. Jorgensen, W. L., Chandrasekhar, J. D., Madura, R., Impey, W., and Klein, M. L. (1983) J. Chem. Phys., 79, 926–935.

    Article  CAS  Google Scholar 

  19. Feenstra, K. A., Hess, B., and Berendsen, H. J. C. (1999) J. Comp. Chem., 20, 786–798.

    Article  CAS  Google Scholar 

  20. Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M. (1997) J. Comp. Chem., 18, 1463–1472.

    Article  CAS  Google Scholar 

  21. Tironi, I. G., Sperb, R., Smith, P. E., and van Gunsteren, W. F. (1995) J. Chem. Phys., 102, 5451–5459.

    Article  CAS  Google Scholar 

  22. Shmidt, M. W., Baldringe, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., and Windus, T. L. (1993) J. Comp. Chem., 14, 1347–1363.

    Article  Google Scholar 

  23. Granovsky, A. A., http://www.classic.chem.msu.su/gran/gamess/index.html

  24. Bayly, C. L., Cieplak, P., Cornell, W. D., and Kollman, P. A. (1993) J. Phys. Chem., 97, 10269–10280.

    Article  CAS  Google Scholar 

  25. Stroganov, O. V., Chilov, G. G., and Švedas, V. K. (2003) J. Mol. Structure (THEOCHEM), 631, 117–125.

    Article  CAS  Google Scholar 

  26. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W., Belew, R. K., and Olson, A. J. (1998) J. Comp. Chem., 19, 1639–1662.

    Article  CAS  Google Scholar 

  27. Chilov, G. G., Sidorova, A. V., and Švedas, V. K. (2007) Biochemistry (Moscow), 72, 495–500.

    Article  CAS  Google Scholar 

  28. Chilov, G. G., Guranda, D. T., and Švedas, V. K. (2000) Biochemistry (Moscow), 65, 963–966.

    CAS  Google Scholar 

  29. Alkema, W. B. L., Prins, A. K., de Vries, E., and Janssen, D. B. (2002) Biochem. J., 365, 303–309.

    Article  CAS  PubMed  Google Scholar 

  30. Alkema, W. B. L., Dijkhuis, A.-J., de Vries, E., and Janssen, D. B. (2002) Eur. J. Biochem., 269, 2093–2100.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Švedas.

Additional information

Published in Russian in Biokhimiya, 2008, Vol. 73, No. 1, pp. 69–79.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM07-204, October 14, 2007.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chilov, G.G., Stroganov, O.V. & Švedas, V.K. Molecular modeling studies of substrate binding by penicillin acylase. Biochemistry Moscow 73, 56–64 (2008). https://doi.org/10.1134/S0006297908010082

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297908010082

Key words

Navigation