Skip to main content
Log in

Solvability of the Operator Riccati Equation in the Feshbach Case

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Let L be a bounded 2 × 2 block operator matrix whose main-diagonal entries are self-adjoint operators. It is assumed that the spectrum of one of these entries is absolutely continuous, being presented by a single finite band, and the spectrum of the other main-diagonal entry is entirely contained in this band. We establish conditions under which the operator matrix L admits a complex deformation and, simultaneously, the operator Riccati equations associated with the deformed L possess bounded solutions. The same conditions also ensure a Markus–Matsaev-type factorization of one of the initial Schur complements analytically continued onto the unphysical sheet(s) of the complex plane of the spectral parameter. We prove that the operator roots of this Schur complement are explicitly expressed through the respective solutions to the deformed Riccati equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, K. A. Makarov, and A. K. Motovilov, “Graph subspaces and the spectral shift function,” Canad. J. Math. 55 (3), 449–503 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. K. A. Makarov, S. Schmitz, and A. Seelmann, “On invariant graph subspaces,” Integral Equations Operator Theory 85 (3), 399–425 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Kostrykin, K. A. Makarov, and A. K. Motovilov, “Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach,” in Advances in Differential Equations and Mathematical Physics, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2003), Vol. 327, pp. 181–198.

    Chapter  Google Scholar 

  4. S. Albeverio and A. K. Motovilov, “Sharpening the norm bound in the subspace perturbation theory,” Complex Anal. Oper. Theory 7 (4), 1389–1416 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Seelmann, “Notes on the subspace perturbation problem for off-diagonal perturbations,” Proc. Amer. Math. Soc. 144 (9), 3825–3832 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Seelmann, “On an estimate in the subspace perturbation problem,” J. Anal. Math. 135 (1), 313–343 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Okubo, “Diagonalization of Hamiltonian and Tamm-Dancoff equation,” Progr. Theoret. Phys. 12, 603–622 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. L. Foldy and S. A. Wouthuysen, “On the Dirac theory of spin 1/2 particles and its non-relativistic limit,” Phys. Rev. 78, 29–36 (1950).

    Article  MATH  Google Scholar 

  9. A. S. Markus and V. I. Matsaev, “On the spectral theory of holomorphic operator-valued functions in Hilbert space,” Funktsional. Anal. Prilozhen. 9 (1), 76–77 (1975) [Functional Anal. Appl. 9 (1), 73–74 (1975)].

    MathSciNet  Google Scholar 

  10. V. Adamjan and H. Langer, “Spectral properties of a class of operator-valued functions,” J. Operator Theory 33 (2), 259–277 (1995).

    MathSciNet  MATH  Google Scholar 

  11. V. Adamyan, H. Langer, and C. Tretter, “Existence and uniqueness of contractive solutions of some Riccati equations,” J. Funct. Anal. 179 (2), 448–473 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. M. Adamyan, H. Langer, R. Mennicken, and J. Saurer, “Spectral components of selfadjoint block operator matrices with unbounded entries,” Math. Nachr. 178, 43–80 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Langer, A. Markus, V. Matsaev, and C. Tretter, “A new concept for block operator matrices: the quadratic numerical range,” Linear Algebra Appl. 330 (1–3), 89–112 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Mennicken and A.A. Shkalikov, “Spectral decomposition of symmetric operator matrices,” Math. Nachr. 179, 259–273 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. K. Motovilov, “Removal of the resolvent-like energy dependence from interactions and invariant subspaces of a total Hamiltonian,” J. Math. Phys. 36 (12), 6647–6664 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Kostrykin, K. A. Makarov, and A. K. Motovilov, “A generalization of the tan 2Θ theorem,” in Current Trends in Operator Theory and Its Applications, Oper. Theory Adv. Appl. (Birkhäuser, Basel, 2004), Vol. 149, pp. 349–372.

    Chapter  Google Scholar 

  17. V. Kostrykin, K. A. Makarov, and A. K. Motovilov, “On the existence of solutions to the operator Riccati equation and the tan Θ theorem,” Integral Equations Operator Theory 51 (1), 121–140 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Davis and W. M. Kahan, “The rotation of eigenvectors by a perturbation. III,” SIAM J. Numer. Anal. 7, 1–46 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Albeverio and A. K. Motovilov, “The a priori tan Θ theorem for spectral subspaces,” Integral Equations Operator Theory 73 (3), 413–430 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. K. Motovilov and A. V. Selin, “Some sharp norm estimates in the subspace perturbation problem,” Integral Equations Operator Theory 56 (4), 511–542 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Albeverio and A. K. Motovilov, “Bounds on variation of the spectrum and spectral subspaces of a few-body Hamiltonian,” in Procerdings of International Conference “Nuclear Theory in the Supercomputing Era–2014”, arXiv: 1410.3231 (Pacific National University, Khabarovsk, 2016), pp. 98–106.

    Google Scholar 

  22. S. Albeverio, A. K. Motovilov, and A. A. Shkalikov, “Bounds on variation of spectral subspaces under J-self-adjoint perturbations,” Integral Equations Operator Theory 64 (4), 455–486 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Albeverio, A. K. Motovilov, and C. Tretter, “Bounds on the spectrum and reducing subspaces of a J-self-adjoint operator,” Indiana Univ. Math. J. 59 (5), 1737–1776 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Veselić, “On spectral properties of a class of J-selfadjoint operators. I,” Glasnik Mat. Ser. III 7, 229–248 (1972).

    MathSciNet  MATH  Google Scholar 

  25. K. Veselić, “On spectral properties of a class of J-selfadjoint operators. II,” Glasnik Mat. Ser. III 7, 249–254 (1972).

    MathSciNet  MATH  Google Scholar 

  26. S. Al’beverio and A. K. Motovilov, “Operator Stieltjes integrals with respect to a spectral measure and solutions of some operator equations,” in Trudy Moskov. Mat. Obshch. (MTsNMO, Moscow, 2011), Vol. 72, no. 1, pp. 63–103 [Trans. Moscow Math. Soc. 72, 45–77 (2011)].

    Google Scholar 

  27. R. Mennicken and A. K. Motovilov, “Operator interpretation of resonances arising in spectral problems for 2 × 2 operator matrices,” Math. Nachr. 201, 117–181 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Feschbach, “Unified theory of nuclear reactions,” Ann. Phys. 5 (4), 357–390 (1958).

    Article  MathSciNet  Google Scholar 

  29. V. Hardt, R. Mennicken, and A. K. Motovilov, “Factorization theorem for the transfer function associated with a 2 × 2 operator matrix having unbounded couplings,” J. Operator Theory 48 (1), 187–226 (2002).

    MathSciNet  MATH  Google Scholar 

  30. V. Hardt, R. Mennicken, and A. K. Motovilov, “Factorization theorem for the transfer function associated with an unbounded non-self-adjoint 2 × 2 operator matrix,” in Singular Integral Operators, Factorization and Applications, Oper. Theory Adv. Appl. (Birkhäuser, Basel, 2003), Vol. 142, pp. 117–132.

    Chapter  Google Scholar 

  31. S. Albeverio and A. K. Motovilov, “On invariant graph subspaces of a J-self-adjoint operator in the Feshbach case,” Math. Notes 100 (6), 761–773 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  32. K. O. Friedrichs, “On the perturbation of continuous spectra,” Comm. Pure Appl. Math. 1, 361–406 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Hagen, J. S. Vaagen, and M. Hjorth-Jensen, “The contour deformation method in momentum space, applied to subatomic physics,” J. Phys. A. Math. Gen. 37 (38), 8991–9021 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Balslev and J. M. Combes, “Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions,” Comm. Math. Phys. 22, 280–294 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Lovelace, “Practical theory of three-particle states. I. Nonrealtivistic,” Phys. Rev. B 135, 1225–1249 (1964).

    Article  MathSciNet  Google Scholar 

  36. M. Reed and B. Simon, Methods of Modern Mathematical Physics. IY. Analysis of Operators (Academic Press, London, 1978).

    MATH  Google Scholar 

  37. V. Hardt, A. Konstantinov, and R. Mennicken, “On the spectrum of the product of closed operators,” Math. Nachr. 215, 91–102 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Sh. Birman and M. Z. Solomyak, Spectrol Theory of Self-Adjoint Operators in Hilbert Space (Lan’, St. Petersburg., 2010) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Albeverio or A. K. Motovilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albeverio, S., Motovilov, A.K. Solvability of the Operator Riccati Equation in the Feshbach Case. Math Notes 105, 485–502 (2019). https://doi.org/10.1134/S0001434619030210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434619030210

Keywords

Navigation