Skip to main content
Log in

On the Monge and Kantorovich problems for distributions of diffusion processes

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We prove that, for the distributions of one-dimensional diffusions with nonconstant diffusion coefficients, the Monge and Kantorovich problems associated with the cost function generated by the Cameron-Martin norm have no nontrivial solutions, i.e., are solvable only when the considered measures coincide. In particular, this is true if the diffusion coefficient is real-analytic and nonconstant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio and N. Gigli, A User’s Guide to Optimal Transport, in Lecture Notes in Math., Vol. 2062: Modelling and Optimisation of Flows on Networks (Springer, Berlin, 2013), pp. 1–155.

    Google Scholar 

  2. V. I. Bogachev, Gaussian Measures. (Amer. Math. Soc., Providence, RI, 1998).

    Book  MATH  Google Scholar 

  3. V. I. Bogachev, Differentiable Measures and the Malliavin Calculus (Amer. Math. Soc., Providence, RI, 2010).

    Book  MATH  Google Scholar 

  4. V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces,” in Real and Stochastic Analysis: Current Trends, M. M. Rao, ed. (World Sci., Singapore, 2014), pp. 1–83.

    Chapter  Google Scholar 

  5. V. I. Bogachev, “Differential properties of measures on infinite dimensional spaces and the Malliavin calculus,” Acta Math. Univ. Carolinae, Math. et Phys. 30(2), 9–30 (1989).

    MATH  MathSciNet  Google Scholar 

  6. V. I. Bogachev and A. V. Kolesnikov, “The Monge-Kantorovich problem: achievements, connections, and perspectives,” Russian Math. Surveys 67(5), 785–890 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  7. V. I. Bogachev, A. V. Kolesnikov, and K. V. Medvedev, “Triangular transformations of measures,” Sb. Math. 196(3–4), 3–30 (2005).

    Article  MathSciNet  Google Scholar 

  8. V. I. Bogachev and A. V. Kolesnikov, “On the Monge-Ampère equation in infinite dimensions,” Infin. Dimen. Anal. Quantum Probab. Related Topics 8(4), 547–572 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. V. I. Bogachev and A. V. Kolesnikov, “Sobolev regularity for the Monge-Ampère equation in the Wiener space,” Kyoto J. Math. 53(4), 713–738 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Cavalletti, “The Monge problem in Wiener space,” Calc. Var. Partial Diff. Equat. 45(1–2), 101–124 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Fang, J. Shao, and K.-Th. Sturm, “Wasserstein space over the Wiener space,” Probab. Theory Related Fields 146(3–4), 535–565 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Feyel and A. S. Üstünel, “Monge-Kantorovitch measure transportation and Monge-Ampére equation on Wiener space,” Probab. Theory Related Fields 128(3), 347–385 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Feyel and A. S. Üstünel, “Solution of the Monge-Ampére equation on Wiener space for general log-concave measures,” J. Funct. Anal. 232(1), 29–55 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  14. I. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes. (Springer, Berlin, 2007), Vol. III.

    Google Scholar 

  15. S. T. Rachev and L. Rüschendorf, Mass Transportation Problems (Springer, New York, 1998), Vols. I and II.

    MATH  Google Scholar 

  16. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. (Springer, Berlin, 1999).

    Book  MATH  Google Scholar 

  17. C. Villani, Topics in Optimal Transportation. (Amer. Math. Soc., Providence, RI, 2003).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Bukin.

Additional information

The article was submitted by the author for the English version of the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukin, D.B. On the Monge and Kantorovich problems for distributions of diffusion processes. Math Notes 96, 864–870 (2014). https://doi.org/10.1134/S0001434614110236

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434614110236

Keywords

Navigation