Skip to main content
Log in

Partial suppression of hydrodynamic mixing in profiled shells

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The problems of stability and mixing are important in the physics of high-energy densities. Ablation-induced acceleration of foils and compression of liners entail loss of symmetry and the development of instability. The most destructive instability is the fundamental f mode, which conserves the pressure in Lagrangian particles. A means has been proposed to eliminate this dangerous mode, based on special profiling of the mass distribution among the subshells. The presence of this mode has led to novel proposals for limiting the degree of instability and optimization of the shells by profiling in the important case of very large density ratios at the ablation front. The solution is based on a class of new polytropes with an inverted density profile and a negative polytrope index N. In this class the density ρ of the material does not decrease towards the boundary with the vacuum, as for ordinary polytropes with N>0, but rather increases. This permits modeling multilayer distributions of ρ typical of inertial confinement fusion systems in which the high-density subshells form an inner core surrounding a low-pressure cavity, and the outer layers are made from low-density materials (plastic, foam type materials, composites). It is emphasized that the distributions are self-similar, and hence both the linear and the turbulent dynamics are scale-invariant. The spectral problem of perturbations in an incompressible fluid has a hidden symmetry. Isospectral deformations of the density profile I{ρ 0(y)} are known that leave the spectrum unchanged. It is of interest to apply the transformation I to the invariant f ± modes, since they are not tied to any specific profile of ρ 0(y). This paper analyzes a new type of invariant mode obtained in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Nuckolls, L. Wood, X. Thiessen, and G. B. Zimmermann, Nature 239, 139 (1972).

    Article  Google Scholar 

  2. K. A. Brueckner and S. Jorna, Rev. Mod. Phys. 46, 325 (1974).

    Article  ADS  Google Scholar 

  3. A. M. Prokhorov, S. I. Aniskimov, and P. P. Pashinin, Usp. Fiz. Nauk 119, 401 (1976) [Sov. Phys. Usp. 19, 547 (1976)].

    Google Scholar 

  4. S. I. Anisimov, A. M. Prokhorov, and V. E. Fortov, Usp. Fiz. Nauk 142, 395 (1984) [Sov. Phys. Usp. 27, 181 (1984).

    Google Scholar 

  5. J. D. Lindl, R. L. McCrory, and M. Campbell, Phys. Today 45(9), 32 (1992).

    Google Scholar 

  6. S. Yu. Gus’kov, N. V. Zmitrenko, and V. B. Rozanov, Zh. Éksp. Teor. Fiz. 108, 548 (1995) [JETP 81, 296 (1995)].

    Google Scholar 

  7. S. W. Haan, S. M. Pollaine, J. D. Lindl et al., Phys. Plasmas 2, 2480 (1995).

    Article  ADS  Google Scholar 

  8. R. McEachern, C. Moore, G. E. Overturf et al., “Inertial Confinement Fusion” ICF Quarterly Report. LLNL 4, 25 (1993).

    Google Scholar 

  9. S. A. Letts, G. W. Collins, E. M. Fearon et al., “Inertial Confinement Fusion” ICF Quarterly Report. LLNL 4, 54 (1994).

    Google Scholar 

  10. N. A. Inogamov, Dokl. Akad. Nauk SSSR 278, 57 (1984) [Sov. Phys. Dokl. 29, 714 (1984)].

    ADS  MATH  MathSciNet  Google Scholar 

  11. W. Unno, Y. Osaki, H. Ando, and H. Shibahashi, Nonradial Oscillations of Stars (University of Tokyo Press, Tokio, 1979).

    Google Scholar 

  12. J. P. Cox, Theory of Stellar Pulsation (Princeton University Press, Princeton New Jersey, 1980).

    Google Scholar 

  13. K. O. Mikaelian, Phys. Rev. Lett. 48, 1365 (1982).

    Article  ADS  Google Scholar 

  14. R. N. Ardashova, S. I. Balabin, N. P. Voloshin, Yu. A. Kucherenko et al., in Vopr. Atom. Nauki Tekh. Ser. Teor. Prikl. Fiz. No. 1, 20 (1988).

  15. H. Takabe, K. Mima, L. Montierth, and R. L. Morse, Phys. Fluids 28, 3676 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Lamb, Hydrodynamics (Dover Publications, New York, 1945), Ch. X.

    Google Scholar 

  17. C. L. Pekeris, Phys. Rev. 73, 145 (1948).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. A. Skumanich, Astrophys. J. 121, 408 (1955).

    ADS  MathSciNet  Google Scholar 

  19. J. Christensen-Dalsgaard, Monthly Notes Royal Astronomical Soc. 190 765 (1980).

    ADS  Google Scholar 

  20. J. Christensen-Dalsgaard, D. O. Cough, and J. Toomre, Science 229, 923 (1985).

    ADS  Google Scholar 

  21. N. A. Inogamov, Zh. Éksp. Teor. Fiz. 110, 559 (1996) [JETP 83, 299 (1996)].

    Google Scholar 

  22. L. J. Slater, in Handbook of Mathematical Functions, NBS Appl Math. Ser. No 55, edited by M. Abramowitz and I. A. Stegun, Washington DC, GPO (1964).

    Google Scholar 

  23. Mathematical Encyclopedia [in Russian] edited by I. M. Vinogradov et al., (Sov. Entsikopediya, Moscow, 1977), Vol. 1.

    Google Scholar 

  24. K. O. Mikaelian, Phys. Rev. A 26, 2140 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  25. N. A. Inogamov, in Problems of Dynamics and Stable Plasmas [in Russian] (Moscow Physicotechnical Institute (MFTI), Moscow, 1990), p. 100.

    Google Scholar 

  26. H. J. Kull, Phys. Rep. 206, 197 (1991).

    Article  ADS  Google Scholar 

  27. C. Cherfils and K. O. Mikaelian Phys. Fluids 8, 522 (1996).

    Article  ADS  Google Scholar 

  28. K. O. Mikaelian, Phys. Rev. E 53, 3551 (1996).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Éksp. Teor. Fiz. 111, 1347–1368 (April 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inogamov, N.A. Partial suppression of hydrodynamic mixing in profiled shells. J. Exp. Theor. Phys. 84, 746–757 (1997). https://doi.org/10.1134/1.558207

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.558207

Keywords

Navigation