Skip to main content
Log in

Turbulence in clusters of galaxies and X-ray line profiles

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Large-scale bulk motions and hydrodynamic turbulence in the intergalactic gas that fills clusters of galaxies significantly broaden X-ray emission lines. For lines of heavy ions (primarily helium-like and hydrogen-like iron ions), the hydrodynamic broadening is appreciably larger than the thermal broadening. Since clusters of galaxies have a negligible optical depth for resonant scattering in the forbidden and intercombination lines of these ions, these lines are not additionally broadened. At the same time, they are very intense, which allows deviations of the spectrum from the Gaussian spectrum in the line wings to be investigated. The line shape proves to be an important indicator of bulk hydrodynamic processes. Doppler probing of turbulence becomes possible, because the cryogenic detectors of the X-ray observatories now ready for launch and being planned will have a high energy resolution (from 5 eV for ASTRO-E2 to 1–2 eV for Constellation-X and XEUS). We use the spectral representation of a Kolmogorov cascade in the inertial range to calculate the characteristic shapes of radiation lines. Significant deviations in the line profiles from the Gaussian profile (shape asymmetry, additional peaks, sharp breaks in the exponential tails) are expected for large-scale turbulence. The kinematic SZ effect and the X-ray line profiles carry different information about the hydrodynamic velocity distribution in clusters of galaxies and complement each other, allowing the redshift, the peculiar velocity of the cluster, and the bulk velocity dispersion to be separated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Churazov, M. Brueggen, C. R. Kaiser, et al., Astrophys. J. 554, 261 (2001).

    Article  ADS  Google Scholar 

  2. E. Churazov, R. Sunyaev, W. Forman, and H. Boehringer, Mon. Not. R. Astron. Soc. 332, 729 (2002).

    Article  ADS  Google Scholar 

  3. E. Churazov, W. Forman, C. Jones, et al., Mon. Not. R. Astron. Soc. (2003, in press); astro-ph/0309427.

  4. A. C. Fabian, J. S. Sanders, C. S. Crawford, et al., Mon. Not. R. Astron. Soc. 344, L48 (2003).

    ADS  Google Scholar 

  5. C. S. Frenk, S. D. M. White, P. Bode, et al., Astrophys. J. 525, 554 (1999).

    Article  ADS  Google Scholar 

  6. J. P. Ge and F. N. Owen, Astron. J. 105, 778 (1993).

    Article  ADS  Google Scholar 

  7. M. R. Gilfanov, R. A. Sunyaev, and E. M. Churazov, Sov. Astron. Lett. 13, 3 (1987).

    ADS  Google Scholar 

  8. V. V. Ivanov, Radiative Transfer and the Spectra of Celestial Bodies (Nat. Bureau of Standards, Washington, 1973), Spec. Publ., no. 385.

    Google Scholar 

  9. R. K. Janev, L. P. Presnyakov, and V. P. Shevelko, Physics of Highly Charged Ions. Springer Series in Electrophysics (Springer, Berlin, 1985), Vol. 13.

    Google Scholar 

  10. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941).

    Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Hydrodynamics (Nauka, Moscow, 1986).

    Google Scholar 

  12. Mathematical Encyclopaedia, Ed. by I. M. Vinogradov (Sov. Éntsiklopediya, Moscow, 1979), Vol. 2.

    Google Scholar 

  13. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965).

    Google Scholar 

  14. D. Nagai, A. Kravtsov, and A. Kosowsky, Astrophys. J. 587, 524 (2003).

    ADS  Google Scholar 

  15. M. L. Norman and G. L. Bryan, The Radio Galaxy Messier 87, Ed. by H.-J. Roeser and K. Meisenheimer (Springer, Berlin, 1999), Lect. Notes Phys. 530, ISSN0075-8450.

    Google Scholar 

  16. F. S. Porter and K. Mitsuda (Astro-E2/XRS Collab.), American Astron. Soc. HEAD Meeting no. 35, no. 33.05 (2003).

  17. M. N. Rosenbluth and R. Z. Sagdeev, Handbook of Plasma Physics (North-Holland, Amsterdam, 1983).

    Google Scholar 

  18. R. K. Smith, N. S. Brickhouse, D. A. Liedahl, and J. C. Raymond, Astrophys. J. 556, L91 (2001).

    ADS  Google Scholar 

  19. R. A. Sunyaev, Pis’ma Astron. Zh. 3, 491 (1977) [Sov. Astron. Lett. 3, 268 (1977)].

    ADS  Google Scholar 

  20. R. A. Sunyaev and Ya. B. Zeldovich, Astrophys. Space Sci. 7, 3 (1970).

    ADS  Google Scholar 

  21. R. A. Sunyaev and Ya. B. Zeldovich, Mon. Not. R. Astron. Soc. 190, 413 (1980).

    ADS  Google Scholar 

  22. R. Sunyaev, M. Norman, and G. Brian, Pis’ma Astron. Zh. 29, 883 (2003) [Astron. Lett. 29, 783 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 29, No. 12, 2003, pp. 892–926.

Original Russian Text Copyright © 2003 by Inogamov, Sunyaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inogamov, N.A., Sunyaev, R.A. Turbulence in clusters of galaxies and X-ray line profiles. Astron. Lett. 29, 791–824 (2003). https://doi.org/10.1134/1.1631412

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1631412

Key words

Navigation