Skip to main content
Log in

Discharge dynamics and the production of active particles in a cathode-directed streamer

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The emission spectroscopy technique is used to analyze a cathode-directed streamer discharge in air at atmospheric pressure in point-plane geometry at interelectrode distances of up to 100 mm and a high-voltage pulse amplitude of 18 kV. The densities of molecules in the N2(C 3Πu, v=0), N +2 (B 2Σ +u , v=0) and NO(A 2Σ+, v=0) states are determined, and the reduced electric field in the streamer head is estimated. It is shown that the increase in the average electric field in the discharge gap substantially intensifies the production of active particles in the discharge plasma and makes the plasma more homogeneous. This effect is only related to the increase in the fraction of regions with a high electric field in the discharge gap and, as a result, the reduction of the discharge energy losses via rapidly thermalized degrees of freedom. The active particles are only produced in the streamer head, including the case in which the interelectrode gap is bridged by the streamer channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Rogowski, Arch. Elektrotech. (Berlin) 20, 99 (1928).

    Google Scholar 

  2. Non-Thermal Plasma Techniques for Pollution Control, Ed. by M. Penetrante and E. Shultheis (Springer-Verlag, Berlin, 1993) [NATO ASI Ser., Ser. G, Vol. 34A].

    Google Scholar 

  3. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964; Mir, Moscow, 1968).

    Google Scholar 

  4. N. Spyrou and C. Manassis, J. Phys. D 22, 120 (1989).

    Article  ADS  Google Scholar 

  5. A. Gilbert and F. Bastien, J. Phys. D 22, 1078 (1989).

    ADS  Google Scholar 

  6. M. Simek, V. Babicky, M. Clupek, et al., J. Phys. D 31, 2591 (1998).

    Article  ADS  Google Scholar 

  7. C. Wu and E. E. Kunhardt, Phys. Rev. A 37, 4396 (1988).

    ADS  Google Scholar 

  8. N. L. Alexandrov and E. M. Bazelyan, J. Phys. D 29, 740 (1996).

    ADS  Google Scholar 

  9. J. M. Guo and J. Wu, IEEE Trans. Plasma Sci. 24, 1348 (1996).

    Google Scholar 

  10. A. A. Kulikovsky, Phys. Lett. A 245, 445 (1998).

    Article  ADS  Google Scholar 

  11. N. L. Aleksandrov, É. M. Bazelyan, and V. A. Vasil’ev, in Proceedings of the XVII Scientific Conference of the Moscow Institute for Physics and Technology, Dolgoprudnyi, 1999, Part 4, p. 149.

  12. R. S. Sigmond, J. Appl. Phys. 56, 1355 (1984).

    Article  ADS  Google Scholar 

  13. P. Stritzke, I. Sander, and H. Raether, J. Phys. D 10, 2285 (1977).

    Article  ADS  Google Scholar 

  14. J. J. Kritzinger, in Proceedings of the 6th International Conference on Phenomena in Ionized Gases, Paris, 1963, Vol. 2, p. 295.

  15. A. Knijnik, B. Potapkin, S. Korobtsev, et al., in Proceedings of the 14th International Symposium on Plasma Chemistry, Prague, 1999, Vol. 5, p. 2319.

  16. N. E. Kuz’menko, L. A. Kuznetsova, and Yu. Ya. Kuzyakov, Frank-Condon Factors of Diatomic Molecules (Mosk. Gos. Univ., Moscow, 1984).

    Google Scholar 

  17. S. V. Pancheshny\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), S. M. Starikovskaya, and A. Yu. Starikovskii, Fiz. Plazmy 23, 664 (1997) [Plasma Phys. Rep. 23, 616 (1997)].

    Google Scholar 

  18. H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  19. A. Belasri, J. P. Boeuf, and L. C. Pitchford, J. Appl. Phys. 74, 1553 (1993).

    Article  ADS  Google Scholar 

  20. Physical Quantities: Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 26, No. 12, 2000, pp. 1126–1138.

Original Russian Text Copyright © 2000 by Pancheshny\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Sobakin, Starikovskaia, Starikovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pancheshnyi, S.V., Sobakin, S.V., Starikovskaya, S.M. et al. Discharge dynamics and the production of active particles in a cathode-directed streamer. Plasma Phys. Rep. 26, 1054–1065 (2000). https://doi.org/10.1134/1.1331141

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1331141

Keywords

Navigation