Skip to main content
Log in

Interaction of nucleic acid segments as a result of modification of the network of hydrogen bonds of the solvent

  • Miscellaneous
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that experimental results on the influence of various factors in the formation efficiency and structure of cholesteric liquid-crystal dispersions of nucleic acids cannot be consistently described using conventional theories of liquid crystal formation. A new model is proposed for the interaction of nucleic acid segments which allows for a change in the particular structure of the solvent hydrogen bonds in the presence of nucleic acid molecules. The conclusions of the model agree with existing spectroscopic and structural investigations of DNA dispersions. According to our model, interaction between nucleic acid molecules and solvent modifies proton tunneling processes in the latter, leading to effective interaction between the nucleic acids. A theoretical analysis of the model is made using a pseudospin formalism in which the effective interaction potential of the nucleic acid segments is calculated. It is shown that this potential may lead to nematic ordering for small distances between the nucleic acid molecules (R ≤ 30 Å) and cholesteric ordering for large distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. S. Lerman, Proc. Natl. Acad. Sci. USA 68, 1886 (1971).

    ADS  Google Scholar 

  2. Yu. M. Yevdokimov, S. G. Skuridin, and V. I. Salynov, Liq. Cryst. 3, 1443 (1988).

    Google Scholar 

  3. F. Livolant and M. F. Maestre, Biochemistry 27, 3056 (1988); F. Livolant and A. Leforestier, Prog. Polym. Sci. 21, 1115 (1996).

    Article  Google Scholar 

  4. Yu. M. Evdokimov, V. I. Salyanov, V. L. Golo, et al., Sens. Sist. 14, 245 (2000).

    Google Scholar 

  5. A. Ya. Grosberg and A. R. Khokhlov, Sov. Sci. Rev., Sect. A 8, 147 (1987).

    Google Scholar 

  6. A. B. Harris, R. D. Kamien, and T. C. Lubensky, Rev. Mod. Phys. 71, 1745 (1999).

    Article  ADS  Google Scholar 

  7. A. A. Kornychev and S. Leikin, J. Chem. Phys. 107, 3656 (1997); Proc. Natl. Acad. Sci. USA 95, 13579 (1998); Phys. Rev. Lett. 84, 2537 (2000).

    ADS  Google Scholar 

  8. S. Chandrasekhar, Liquid Crystals (Cambridge Univ. Press, Cambridge, 1977; Mir, Moscow, 1980).

    Google Scholar 

  9. P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974; Mir, Moscow, 1977).

    Google Scholar 

  10. Y. R. Lin-Liu, Yu Ming Shih, Chia-Wei Woo, and H. T. Tan, Phys. Rev. A 14, 445 (1976).

    Article  ADS  Google Scholar 

  11. B. Samori, M. A. Osipov, I. Domini, and A. Bartolini, Int. J. Biol. Macromol. 15, 353 (1993).

    Article  Google Scholar 

  12. T. V. Samulski and E. T. Samulski, J. Chem. Phys. 67, 824 (1977).

    ADS  Google Scholar 

  13. V. I. Salyanov and Yu. M. Evdokimov, Dokl. Akad. Nauk 368, 700 (1999).

    Google Scholar 

  14. Yu. M. Evdokimov, S. G. Skuridin, and G. B. Lortkipanidze, Liq. Cryst. 12, 1 (1992).

    Google Scholar 

  15. Yu. M. Evdokimov, S. G. Skuridin, S. V. Semenov, et al., Biofizika 43, 240 (1998).

    Google Scholar 

  16. S. Skuridin, N. Badaev, A. Dembo, et al., Liq. Cryst. 23, 51 (1998).

    Google Scholar 

  17. Yu. M. Evdokimov, V. I. Salyanov, A. T. Dembo, and F. Spener, Sens. Sist. 13, 159 (1999).

    Google Scholar 

  18. W. Saenger, Principles of Nucleic Acid Structure (Springer-Verlag, New York, 1984).

    Google Scholar 

  19. Y. Yevdokimov, V. Salyanov, and M. Palumbo, Liq. Cryst. 131, 285 (1985); V. I. Salyanov, M. Palumbo, and Yu. M. Evdokimov, Mol. Biol. 27, 869 (1993).

    Google Scholar 

  20. B. W. van der Meer, G. Vertogen, A. J. Dekker, and J. G. J. Ypma, J. Chem. Phys. 65, 3935 (1976); E. I. Kats, Zh. Éksp. Teor. Fiz. 74, 2320 (1978) [Sov. Phys. JETP 47, 1205 (1978)].

    ADS  Google Scholar 

  21. R. Podgornik and V. A. Parsegian, Macromolecules 23, 2265 (1990).

    Article  Google Scholar 

  22. S. Neidle, H. M. Berman, and H. S. Shieh, Nature 288, 129 (1980).

    Article  Google Scholar 

  23. E. Clementi and G. Corongiu, J. Chem. Phys. 72, 3979 (1980).

    ADS  Google Scholar 

  24. W. Saenger, Nature 279, 343 (1979).

    Article  Google Scholar 

  25. J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).

    Article  Google Scholar 

  26. N. A. Bul’enkov, Biofizika 36, 181 (1991).

    Google Scholar 

  27. E. Clementi and G. Corongiu, Biopolymers 18, 2431 (1979).

    Article  Google Scholar 

  28. K. Kim and M. S. John, Biochim. Biophys. Acta 565, 131 (1979).

    Google Scholar 

  29. D. Perahia, M. S. John, and B. Pullman, Biochim. Biophys. Acta 474, 349 (1977); G. Minasov, V. Tereshko, B. Chernov, and L. Malinina, J. Cryst. Growth 122, 136 (1992).

    Google Scholar 

  30. M. L. Kopka, A. Fratani, H. R. Drew, and R. E. Dickerson, J. Mol. Biol. 163, 129 (1983).

    Article  Google Scholar 

  31. L. B. Boinovich and A. M. Emelyanenko, Z. Phys. Chem. (Munich) 178, 229 (1992).

    Google Scholar 

  32. P. Gallo, cond-mat/0003027 (2000).

  33. A. Goldblum, D. Perahia, and A. Pullman, FEBS Lett. 91, 213 (1978).

    Article  Google Scholar 

  34. S. Leikin, D. C. Rau, and A. V. Parsegian, Phys. Rev. A 44, 5272 (1991).

    ADS  Google Scholar 

  35. R. Blinc, J. Phys. Chem. Solids 13, 204 (1960).

    Google Scholar 

  36. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon Press, New York, 1986).

    Google Scholar 

  37. R. Blinc and B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974; Mir, Moscow, 1975).

    Google Scholar 

  38. J. M. Ziman, Models of Disorder: the Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, Cambridge, 1979; Mir, Moscow, 1982).

    Google Scholar 

  39. H. H. Strey, J. Wang, R. Podgornik, et al., Phys. Rev. Lett. 84, 3105 (2000); R. D. Kamien and A. J. Levine, Phys. Rev. Lett. 84, 3109 (2000).

    Article  ADS  Google Scholar 

  40. D. H. van Winkle, M. W. Davidson, W. X. Chen, and R. L. Rill, Macromolecules 23, 4140 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 118, No. 4, 2000, pp. 959–972.

Original Russian Text Copyright © 2000 by Golo, Yevdokimov, Kats, Salyanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golo, V.L., Yevdokimov, Y.M., Kats, E.I. et al. Interaction of nucleic acid segments as a result of modification of the network of hydrogen bonds of the solvent. J. Exp. Theor. Phys. 91, 832–843 (2000). https://doi.org/10.1134/1.1326975

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1326975

Keywords

Navigation