The feasibility of using numerical simulation of fluid dynamics equations for the detailed description of long-range infrasound propagation in the atmosphere is investigated. The two dimensional (2D) Navier Stokes equations are solved via high fidelity spatial finite differences and Runge-Kutta time integration, coupled with a shock-capturing filter procedure allowing large amplitudes to be studied. The accuracy of acoustic prediction over long distances with this approach is first assessed in the linear regime thanks to two test cases featuring an acoustic source placed above a reflective ground in a homogeneous and weakly inhomogeneous medium, solved for a range of grid resolutions. An atmospheric model which can account for realistic features affecting acoustic propagation is then described. A 2D study of the effect of source amplitude on signals recorded at ground level at varying distances from the source is carried out. Modifications both in terms of waveforms and arrival times are described.

1.
M. E.
Delany
, “
Sound propagation in the atmosphere-a historical review
,”
Acustica
38
,
201
223
(
1977
).
2.
U.
Ingård
, “
A review of the influence of meteorological conditions on sound propagation
,”
J. Acoust. Soc. Am.
25
,
405
411
(
1953
).
3.
L.
Sutherland
and
G.
Daigle
, “
Atmospheric sound propagation
,”
Handbook of Acoustics
(
Wiley
,
New York
,
1998
), pp.
305
329
.
4.
K.
Attenborough
, “
Sound propagation close to the ground
,”
Ann. Rev. Fluid Mech.
34
(
1
),
51
82
(
2002
).
5.
C.
de Groot-Hedlin
,
M.
Hedlin
, and
D.
Drob
, “
Atmospheric variability and infrasound monitoring
,” in
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
Dordrecht
,
2009
), pp.
475
507
.
6.
M.
West
,
R. A.
Sack
, and
F.
Walkden
, “
The fast field program (FFP). A second tutorial: Application to long range sound propagation in the atmosphere
,”
Appl. Acoust.
33
(
3
),
199
228
(
1991
).
7.
M.
West
,
K.
Gilbert
, and
R. A.
Sack
, “
A tutorial on the parabolic equation (PE) model used for long range sound propagation in the atmosphere
,”
Appl. Acoust.
37
(
1
),
31
49
(
1992
).
8.
E.
Salomons
,
Computational Atmospheric Acoustics
(
Kluwer Academic
,
Dordrecht
,
2001
), Chap. 4.
9.
M. V.
Averyanov
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
Ph.
Blanc–Benon
, and
R. O.
Cleveland
, “
Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media
,”
Acoust. Phys.
52
(
6
),
623
632
(
2006
).
10.
D. I.
Blokhintsev
, “
Acoustics of a nonhomogeneous moving medium
,” Tech. Memorandum No. 1399, National Advisory Committee on Aeronautics (
1956
).
11.
A. D.
Pierce
, “
Geometrical acoustics' theory of waves from a point source in a temperature- and wind-stratified atmosphere
,”
J. Acoust. Soc. Am.
39
(
6
),
1261
1261
(
1966
).
12.
O.
Gainville
,
Ph.
Blanc-Benon
, and
J.
Scott
, “
Infrasound propagation in realistic atmosphere using nonlinear ray theory
,”
AIP Conf. Proc.
1474
(
1
),
343
346
(
2012
).
13.
C. I.
Chessell
, “
Observations of the effects of atmospheric turbulence on low-frequency sound propagation
,”
J. Acoust. Soc. Am.
60
(
1
),
29
33
(
1976
).
14.
O.
Gainville
,
Ph.
Blanc-Benon
,
E.
Blanc
,
R.
Roche
,
C.
Millet
,
F.
Le Piver
,
B.
Despres
, and
P. F.
Piserchia
, “
Misty picture: a unique experiment for the interpretation of the infrasound propagation from large explosive sources
,” in
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
Dordrecht
,
2009
), pp.
575
598
.
15.
O.
Marsden
,
L.
Vayno
,
C.
Bogey
, and
C.
Bailly
, “
Study of long-range infrasound propagation with high-performance numerical schemes applied to the Euler equations
,”
Proceedings of the 13th Long Range Sound Propagation symposium
, Lyon, France, pp.
201
216
(
2008
).
16.
C.
de Groot-Hedlin
, “
Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere
,”
J. Acoust. Soc. Am.
124
(
3
),
1430
1441
(
2008
).
17.
C.
de Groot-Hedlin
, “
Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere
,”
J. Acoust. Soc. Am.
132
(
2
),
646
656
(
2012
).
18.
V.
Ostashev
,
K.
Wilson
,
L.
Liu
,
D.
Aldridge
,
N.
Symons
, and
D.
Marlin
, “
Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation
,”
J. Acoust. Soc. Am.
117
(
2
),
503
517
(
2005
).
19.
S.
Del Pino
,
B.
Després
,
P.
Havé
,
H.
Jourdren
, and
P. F.
Piserchia
, “
3D finite volume simulation of acoustic waves in the earth atmosphere
,”
Comput. Fluids
38
,
765
777
(
2009
).
20.
D.
Dragna
,
B.
Cotté
,
Ph.
Blanc-Benon
, and
F.
Poisson
, “
Time-domain simulations of outdoor sound propagation with suitable impedance boundary conditions
,”
AIAA J.
49
(
7
),
1420
1428
(
2011
).
21.
W.
Hoffmann
,
R.
Kebeasy
, and
P.
Firbas
, “
Introduction to the verification regime of the comprehensive nuclear-test-ban treaty
,”
Phys. Earth Planet Inter.
113
(
1
),
5
9
(
1999
).
22.
A.
Le Pichon
,
E.
Blanc
, and
A.
Hauchecorne
, “
Contribution of infrasound monitoring for atmospheric remote sensing
,” in
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
Dordrecht
,
2009
), pp.
629
646
.
23.
L. C.
Sutherland
and
H. E.
Bass
, “
Atmospheric absorption in the atmosphere up to 160 km
,”
J. Acoust. Soc. Am.
115
(
3
),
1012
1032
(
2004
).
L. C.
Sutherland
and
H. E.
Bass
, See also Erratum:
J. Acoust. Soc. Am.
120
(
5
),
2985
(
2006
).
24.
G.
Hanique-Cockenpot
, Etude numérique de la propagation non linéaire des infrasons dans l'atmosphere (Numerical study of non-linear infrasound propagation in atmosphere), Ph.D. thesis,
Ecole Centrale de Lyon
,
2011
.
25.
J.
Lighthill
,
Waves in Fluids
(
Cambridge University Press
,
Cambridge
,
1974
), Chap. 4.
26.
C.
Bogey
and
C.
Bailly
, “
A family of low dispersive and low dissipative explicit schemes for noise computations
,”
J. Comput. Phys.
194
(
1
),
194
214
(
2004
).
27.
J.
Berland
,
C.
Bogey
,
O.
Marsden
, and
C.
Bailly
, “
High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems
,”
J. Comput. Phys.
224
,
637
662
(
2007
).
28.
C.
Bogey
,
N.
De Cacqueray
, and
C.
Bailly
, “
A shock-capturing methodology based on adaptive spatial filtering for high-order non-linear computations
,”
J. Comput. Phys.
228
1447
1465
(
2009
).
29.
D.
Gaitonde
and
M.
Visbal
, “
Padé-type higher-order boundary filters for the Navier-Stokes equations
,”
AIAA J.
38
(
11
),
2103
2112
(
2000
).
30.
C. K. W.
Tam
and
J. C.
Webb
, “
Dispersion-relation-preserving finite difference schemes for computational acoustics
,”
J. Comput. Phys.
107
,
262
281
(
1993
).
31.
D. J.
Bodony
, “
Analysis of sponge zones for computational fluid mechanics
,”
J. Comput. Phys.
212
(
2
),
681
702
(
2006
).
32.
P. G.
Bergmann
, “
The wave equation in a medium with a variable index of refraction
,”
J. Acoust. Soc. Am.
17
(
4
),
329
333
(
1946
).
33.
S.
Pirozzoli
, “
On the spectral properties of shock-capturing schemes
,”
J. Comput. Phys.
219
(
2
),
489
497
(
2006
).
34.
O.
Marsden
,
C.
Bogey
, and
C.
Bailly
, “
High-order curvilinear simulations of flows around non-Cartesian bodies
,”
J. Comput. Acoust.
13
(
4
),
731
748
(
2005
).
35.
O.
Marsden
,
X.
Gloerfelt
, and
C.
Bailly
, “
Direct noise computation of adaptive control applied to a cavity flow
,”
C. R. Acad. Sci.
331
,
423
429
(
2003
).
36.
O.
Marsden
,
C.
Bogey
, and
C.
Bailly
, “
Direct noise computation of the turbulent flow around a zero-incidence airfoil
,”
AIAA J.
46
(
4
),
874
883
(
2008
).
37.
C.
Bogey
,
O.
Marsden
, and
C.
Bailly
, “
Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers
,”
Phys. Fluids
23
(
3
),
035104
(
2011
).
38.
O.
Marsden
,
C.
Bogey
, and
C.
Bailly
, “
Investigation of flow features around shallow round cavities subject to subsonic grazing flow
,”
Phys. Fluids
24
(
12
),
125107
(
2012
).
39.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
Princeton
,
1987
), Chap. 7.4.
40.
K.
Wilson
and
L.
Liu
, “
Finite-difference, time-domain simulation of sound propagation in a dynamic atmosphere
,” Tech. report ERDC/CRREL TR-04-12, Cold Regions Research and Engineering Lab, Hanover, NH (
2004
).
41.
K.
Attenborough
,
S.
Taherzadeh
,
H. E.
Bass
,
X.
Di
,
R.
Raspet
,
G. R.
Becker
,
A.
Güdesen
,
A.
Chrestman
,
G. A.
Daigle
,
A.
LEspérance
,
Y.
Gabillet
,
K. E.
Gilbert
,
Y. L.
Li
,
M. J.
White
,
P.
Naz
,
J. M.
Noble
, and
H. A. J. M.
van Hoof
, “
Benchmark cases for outdoor sound propagation models
,”
J. Acoust. Soc. Am.
97
(
1
),
173
191
(
1995
).
42.
A. D.
Pierce
,
Acoustics, An Introduction to Its Physical Principles and Applications
, 3rd ed. (
Acoustical Society of America
,
Melville, NY
,
1994
), Chap. 9.5.
43.
F. B.
Jensen
,
W.
Kuperman
,
M.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer
,
Dordrecht
,
2011
), Sec. 2.5.1.
44.
O.
Marsden
and
O.
Gainville
Nonlinear effects in infrasound propagation simulations
,”
Acoustics 2012 Nantes Conference
(
2012
).
45.
R.
Marchiano
,
F.
Coulouvrat
, and
R.
Grenon
, “
Numerical simulation of shock wave focusing at fold caustics, with application to sonic boom
,”
J. Acoust. Soc. Am.
114
(
4
),
1758
1771
(
2003
).
46.
C.
de Groot-Hedlin
,
M.
Hedlin
,
K.
Walker
,
D.
Drob
, and
M.
Zumberge
, “
Evaluation of infrasound signals from the shuttle Atlantis using a large seismic network
,”
J. Acoust. Soc. Am.
124
(
3
),
1442
1451
(
2008
).
47.
R. R.
Rosales
and
E. G.
Tabak
, “
Caustics of weak shock waves
,”
Phys. Fluids
10
(
1
),
206
222
(
1998
).
48.
J.
DuMond
,
E.
Richard Cohen
,
W. K. H.
Panofsky
, and
E.
Deeds
, “
A determination of the wave forms and laws of propagation and dissipation of ballistic shock waves
,”
J. Acoust. Soc. Am.
18
(
1
),
97
118
(
1946
).
You do not currently have access to this content.